Servicio de montaje de productos en China

Finding reliable assembly companies near me can be quite challenging. In a competitive environment, distinguishing between quality providers and inferior ones is a quite complex task. If you are looking for the leading assembly companies near your locality, it’s now imperative to exercise your choices wisely.

In addition, while searching for a product assembly company near me, it’s better to pay attention to specialized firms nearby. The electronic, medical, and cable assembly companies are suitable to meet the various demands. Check up on their capabilities, and client feedback to see if they are fitting for your project at hand.

It will also assist you in identifying the most suitable partner and improving on efficiency and quality of the assembled elements. Curious to find a reliable assembly company near me? This article will consider assembly firms with high profiles in China, Europe, and the United States. Learn about the individuality of each company and how you can address your assembly requirements to them. Let’s dive in!

When you are looking for products assembly services, I assume that you are also looking for plastic injection molding compnies near me as your location, in that case Sincere Tech will be one of your best options.

assembly company near me

List of Top 12 Assembly Companies In The World

Table: Top 12 assembly companies in the world.

Company Name Ubicación Year Founded Employee Size
Supex Machining China 2013 10-12
Sincere Tech (All in one services) China 2005 51-200
PCBway China 2014 501 – 5k
Hi-Tech Circuits China 1997 501 – 5k
RayMing China 2012 501-1,000
JLCPCB China 2006 1k – 5k
Benchmark Electronics US 1979 11-50
Kimball Electronics US 1961 5k – 10k
Celestica Canada 1994 10k+
MedTech Innovations UK 2016 51-200
Xinfeng Cable China 2017 501 – 1k
Viant US 1999 201 – 500

1. Supex Machining

SUPEX was established in 1974 in Shenzhen, China. The company offers diverse solutions for assembling products such as mechanical, electromechanical as well as cable harness assembly. This gives them valuable insights for executing projects. As a result, they can optimize work in sectors such as the automotive, aircraft manufacturing, and equipment-making industries.

SUPEX provides solutions for automobiles such as connecting rods, gearboxes, fixtures, and cable assemblies. Besides, the fixed structure and precise temporary assembly structures are provided for by the facility and all their parts undergo rigorous quality tests, before end-use. They employ ISO 9001 compliance in their processes reflecting a strategic focus on the ideals of quality and reliability. In its bid to produce high-quality work, it carries out inspections that include standards inspection and checks as well as dimensional reports.

Moreover, they give their valued customers First Article Inspection Reports (FAIR AS9102) to meet the legal requirements in the market. Incorporating superior technologies and a network of accredited partners, SUPEX provides excellent assembly services as well as supply chain services.

2. Sincere Tech

assembly company near me Dongguan Sincere Tech Co., Ltd. offers a comprehensive products assembly services in China with extensive capacity and technical expertise. Their premium assembly services cover electronics board assembly, plastic components, PC boards, and packing products. They make use of ultrasonic welding, heat welding, and PCB soldering among other techniques to accurately curate high-standard assembly products.

Sincere Tech has over decades of experience in the industry and the company adopts advanced technology to enhance their manufacturing capability. For instance, Sincere Tech takes pride in providing small-scale prototypes to mass-scale products in a short turnaround. Sincere Tech has in-house facilities for all in one services from the part and PCB design, prototyping, testing, mold design and manufacturing, injection molding manufacturing, die casting products, metal stamping, machining, certificate, and assembly.

They also provide comprehensive and precise assembly and packing before shipment. Thus, by keeping the dependence on the purchased parts and components affordable, Sincere Tech has better control over the production schedules and quality typically inherent to the Chinese OEM contract manufacturing ethos.

3. PCBWay

PCBWay was started in 2014, as an organization based in China. They are specialized in the fabrication of printed circuit boards and circuit assemblies. Moreover, the company provides a diversified list of assembly services targeting the electronics industry, a prominent sector among their lists. The core services offered by PCBway include Prototype PCB assembly, SMT assembly, BGA assembly, and mixed assembly.

They work on different forms of projects such as cable and box build assemblies too. PCBway can turn around quick, high-quality assemblies in about 3-5 days, which would position them to handle both low to mid-volume manufacturing requirements. Their quality control measures uphold IPC 610 Class 2 and Class 3 which give reliability and accuracy to their all products.

In addition, they employ automated optical inspection (AOI) and X-ray inspection in the manufacturing technologies used to ensure high-quality assembly at their in-line setup. These advantages make PCBway a preferred partner for electronic manufacturing because of their willingness to satisfy their client’s needs and short-time deliveries.

4. HiTech Circuits

HiTech Circuits is a PCB fabrication and assembly company located in China. It has grown to become a major player in the electronics manufacturing solutions industry. The company offers a range of specific services, including prototype PCB assembly, automated assembly, wave soldering, selective soldering, and point-to-point wiring. These are just a few examples of their capabilities.

Moreover, they are capable of taking on different production projects– from a very low to a high volume –, which provides versatility for all clients. Standard-quality assemblies are typically completed within a few days, as the company prioritizes a fast turnaround time. Thanks to their high-efficiency machines, allow them to fulfill both prototype projects and mid-volume manufacturing demands successfully.

HiTech Circuits maintains high standards, conducting visual inspections along with automated optical inspections (AOI) and X-ray inspections to ensure stringent set quality. With quality assurance measures and a deep orientation to customers’ services, HiTech Circuit has established itself as a trustworthy ally to organizations looking for precise electronic assembly services.

5. RayMing Technology Co., Ltd.

RayMing Technology Co., Ltd. is a specialized manufacturer and supplier of high-frequency PCBs established in the year 2005 located in Shenzhen, Guangdong, China. It positions itself as a responsible participant in the electronics manufacturing market. Several categories of products constitute RayMing’s service portfolio including printed circuit board manufacturing, PCB assembly, box-build assembly, parts purchasing, and PCBA testing.

Their production methodology is elaborate and involves sophisticated technology and quality materials that enable the firm to fulfill the unique electronics market demands. Maintaining high quality is a key goal for management at RayMing. They achieve this through advanced quality management systems like ISO 9001 and QS 9000. These systems are complemented with specialized inspection equipment so that the products can be carefully inspected throughout production.

Additionally, RayMing is a standard PCB assembly company that offers IC programming services. This allows them to program integrated circuits on PCBs to meet client needs. This capability increases their offerings to clients as it can serve to prototype as well as produce finished products. With a small team of 1 to 10 employees, the organization is more focused on customer orientation.

They ensure that employee initiatives exceed client expectations. This is achieved through constant improvement of the client’s value propositions. So, overall, RayMing can be distinguished as a reliable partner offering PCB solutions and using accountable technologies and quality control to supply higher-worth offers within the global market.

6. JLCPCB

JLCPCB was established in 2006 in China. It has made giant strides and grown to be among the best suppliers of PCB manufacturing and assembly services. The company is reputed for its professional swift service delivery methods and shorter turnaround periods which provide a full range of precise service solutions aimed at satisfying the electronics sector.

JLCPCB deals with all forms of PCBs, rigid PCBs; flex PCBs; and high-frequency PCBs. Their manufacturing process can handle up to 32 layers which makes it suitable for sophisticated designs as well as designs, that need specific control impedance. The company uses FR-4 laminates for their superior quality, sourcing them from reputable manufacturers. Additionally, they offer PCBs with aluminum and copper cores for specific applications.

In addition,  JLCPCB has flexibility in dimensions, the maximum size for 2-layer FR4 boards can be 1020 × 600 mm. The company also ensures accurate specifications in its operations with manufacturing tolerances fixed at ± 0.1mm for key part sizes. Quality assurance is a central concern of JLCPCB. The firm uses several methods such as AOI and X-ray inspection.

For such reason, JLCPCB has become a go-to supplier for electronics manufacturing companies. Besides PCB fabrication, JLCPCB provides one-stop PCB assembly solutions, SMT, and TAH to meet low and middle production requirements. Moreover, they include such value-added services as parts sourcing, IC programming as well as box-build assembly for the development of electronics products.

Thanks to online orders, JLCPCB’s service provides customers with an opportunity to upload designs and get quotes within minutes. Due to their focus on customer satisfaction embedded with quality services, they are considered to be among the best manufacturing industries for electronic assemblies.

7. Benchmark Electronics

Benchmark Electronics is a dominant and largest contract manufacturer of electronic assembly. It targets the higher end and more specialized electronics goods; as a result, it applies sophisticated SMT to guarantee precise assembly components. At their platform, Every PCB is closely monitored and examined by incorporating optical, laser, and even X-ray technologies to assure component traceability and compliance with high regulatory requirements.

The company has an extensive service portfolio of SMT Assembly, BGA packaging, COB, MCM Assembly, & PTH Assembly with automated SMT Assembly at a very high complexity. This kind of diversity puts Benchmark in a position to meet different electronic manufacturing needs with high performance and reliability. Benchmark brings together innovative technology and engineering design services with an efficient supply chain structure to provide exceptional manufacturing services to fulfill clients’ requirements. Thus, the company is well-placed to be a preferred player in the electronics assembly manufacturing settings.

8. Kimball Electronics

Kimball Electronics is a leading global supplier of electronic manufacturing services offering high-reliability PCB assembly and other value-added products. The company conveniently offers solutions that meet the high requirements of industries like medical, automotive, and industrial electronics. Their commitment to quality makes them suitable partners for businesses that deal with high-relativity product needs.

One of the main competencies of Kimball is complete manufacturing solutions that involve engineering, design, and production. This process improves manufacturability and ensures a smooth transition from design for manufacturing to full production. The company also provides fast prototyping for the prototype development in a short time to make changes faster.

In addition to the capabilities of Kimbel; the company applies Surface Mount Technology (SMT), Ball Grid Array (BGA) packaging, and Chip-on-Board (COB) technologiesbring product assemblies to final use. Moreover, they enable undertaking through-hole and Multi-Chip Module (MCM) assembly to address the challenges of the current electronics. This diverse experience makes it possible for Kimball to meet different assembly needs. Quality is a core value at Kimball Electronics.

The company’s assembly accessories are compliant with standards such as ISO 9001 and ISO 13485. Furthermore, they use optical, laser, and X-ray tests to ensure product reliability and conformity to market standards. In addition to assembly, Kimball Electronics offers a wide range of aftermarket support services to meet modern market requirements. The focus on the customer’s solutions helps to create strong and stable relationships by signifying their satisfaction level.

9. Celestica

Precision manufacturing, and product assembly solutions position Celestica as a premier leader in the contemporary market. Celestica uses state-of-the-art technology in line with industry knowledge and enables complicated electronic products. These advanced systems lead to higher effectiveness and flexibility.

Clients from various industries rely on Celestica for their highly repeatable, and reliable services. Aerospace, healthcare, and industrial equipment industries are heavy consumers of Celestics products that benefit immensely. The company has its specialization in multi-material assembly that includes aluminum, stainless steel, and much more.

Effective electro-mechanical assembly ability guarantees the quality performance of every project. Moreover, their automated systems can effectively work 24/7, thereby giving the highest levels of productivity and minimum to zero downtime.

Celestica’s commitment to quality ensures that the company delivers the expected outcomes. Moreover, they work hand in hand with the clients to develop solutions that address certain requirements. The close collaboration with the partners allows for using creativity to address manufacturing issues. It puts them on a better pedestal in the global market and makes them a strategic partner

10. MedTech Innovations

MedTech Innovations is based in Oulu, Finland. It has a wide global network, and branches in Germany, UK, and Ireland. The company is dedicated to offering sophisticated assembly solutions that apply specifically to the medical technology industry. Some of its principal products are the integration of wireless medical instruments, power-sensitive devices, and other related healthcare systems.

The biggest advantage to partnering with MedTech Innovations is their dedication to quality assurance. The company is ISO 13485 accredited for medical device assembly and all processes have to conform to medical device assembly standards like FDA. This certification shows MedTech’s commitment to quality and thorough product testing.

MedTech Innovations employs sophisticated testing facilities in-house and offers mechanical, environmental, and RF testing. This capability improves product quality and safety and makes the firm unique from other assembly firms in the market. Furthermore, flexibility characterizes the assembly processes allowing MedTech fast reactions to market needs and the development of personalized solutions for clients.

Being located in a strategic place, devoted to the quality of offering innovative assembly solutions, MedTech Innovations offers the highest quality of medical technology products to meet its clients’ needs for a reliable partnership. So, if you’re searching for medical assembly companies near me, you can visit MedTech to get personalized solutions.

11. Xinfeng Cable

Xinfeng Cable was founded in 1996, located in Zhengzhou City, China. The company offers a wide variety of cable assembly solutions such as aerial bundled cables, control cables, and medium and low-voltage cables. As an innovative and quality-oriented company,

Xinfeng Cable works in partnership with contractors and consultants to provide optimal cables for specific purposes. As for quality control, Xinfeng Cable follows international standards such as IEC, VDE, and UL. The company also offers versatility in customizations, allowing it to meet the needs of a certain project as required.

In addition, their production plants and equipment are well-outfitted to provide efficiency, high-capacity output, and quality production. The company has rich experience in many sectors such as power networks, construction, renewable energy, and several others. For clients searching for local cable assembly companies near me, Xinfeng Cable’s diverse capabilities and strong reputation make it a popular choice.

The commitment to provide quality client support coupled with appropriate supply chain management and after-sales service is an added benefit of Xinfeng cable in the market. Regardless of your requirements for standard cables or special solutions, Xinfeng Cable is prepared to help with all assembly requirements.

12. Viant

Viant was founded more than three decades ago. Being a certified contract manufacturing company that offers safe products to the medical sector. Viant currently has facilities in the United States and Europe, as well as in countries such as China, Costa Rica, Mexico, and Puerto Rico, which make it possible for it to expand its operations.

Moreover, the company has the ISO 13485 and 14971 certifications, which makes it possible to produce both Class I, II, and III devices. Viant has clean and white room facilities offering a controlled environment with Class 7 and 8 medical device assembly. The manufacturing capabilities of Viant range from low-volume prototyping to high-volume production to allow for changes in the demand of clients. Their competently developed Lean Six Sigma program improves productivity and process quality. The firm possesses assembly skills, both manual as well as automated with the use of ultrasonic welding, RF welding, and precise measurement tests.

In addition to capabilities, Viant features specialization action in Sterile Barrier Packaging and capable of managing challenges related to Medical Technology assembly. They have a strong supply chain and sourcing. This approach reduces the likelihood and difficulties linked to switching from one manufacturer to another as scaling occurs. Thus, clients who choose Viant as their outsourcing partner get more than an extensive list of assembly services, strict quality control, and a focus on developing unique solutions for the medical field.

How To Select the Right Electronic Product Assembly Partner For Your Project?

When selecting an assembly company near me as a partner, consider these unique points:

  • Specialization in Industry Standards: When seeking product assembly partners, make sure that they meet certain standards such as IPC or ISO.
  • Advanced Technology Integration: Select a partner who is implementing state of art technologies which include included assembly, AI-based control, or real-timeless to boost production line productivity and quality.
  • Flexible Scalability: It’s also suggested to assess the skill of the partners for changing the production capacity as per the requirement so that the inventory level and lead time can be handled properly.
  • Prototyping and Iteration Support: The manufacturers who can deliver rapid prototyping and design iterations can shave weeks or even days off the project schedule and bring changes that result from testing.
  • Local vs. Global Manufacturing Options: Consider the benefits of having a local assembly for quicker turnaround and better communication. Compare this to using global facilities for cost savings and increased scalability.
  • End-to-End Supply Chain Management: Choose a partner who can supply and manage the entire supply chain as well as procure and manage part components, and transportation.

Resumen

In summary, the choice of the contract electronics assembly firm plays a major role in the success or failure of your projects. So, having a strategic alliance with those who are most proficient in SMT manufacturing, engineering services, and supply chain management is a sound starting point. It also means that it solves problems during production and at various stages of the product lifecycle.

Potential EMS partners should be carefully assessed by considering their capacity experience, and corporate philosophy. Procedures of the communication and business models also have to match your goals for the partnership to be effective in the long run.

Based on the profiles of a leading electronic assembly company near me. Take a step further in your search for service providers that would meet your requirements. If you have a reliable and experienced partner, you can minimize the time and effort needed to provide your consumers with the best innovative assembly products.

Preguntas frecuentes

Q1. What should I expect from an EMS partner?

When considering an assembly partner, ensure, they are certified with ISO 9001 and ISO 13485. They also need to have experience in your specific market.

Q2. How does supply chain management influence the efficiency of the production process?

Supply chain management is all about the timely acquisition of components. It eliminates the lead time and therefore, has a direct impact on efficiency.

Q3. Why is quality assurance important in electronics montaje del producto?

Quality control check reduces defects throughout the production process to comply with standard measures and customer requirements. This improves dependability and minimizes the cost of recollects and reprocessing.

Q4. What common challenges do manufacturing engineers face in the design phase?

Manufacturing engineering offers significant information during the design process to enhance manufacturability and performance and to identify potential problems before the manufacturing process starts.

Envases de plástico personalizados

Custom Plastic containers are designed for individual uses in different industries and sectors. Using high-end polymers, these containers provide improved strength and resistance to chemicals. Custom designs provide specific sizes to fit the items well and also to aid in easy storage and transport. Some of these features include tamper-evident seals and stackability that will allow you to save space. Custom options can be chosen to meet the requirements of regulations and to be environmentally friendly.

Industries Uses Custom Plastic Containers

Various industries use custom plastic containers with lids as they all have different properties. In the food sector, they are approved by the Food and Drugs Administration hence a safe means of containing and transporting perishable foods. Benefits such as hermetic closures and UV protection serve both to enhance the product’s shelf life and to guard it against spoilage. go to food grade plastic material to know more about safeety of products.

In the pharmaceutical industry, custom containers help meet several regulatory requirements to protect the drugs from the environment. Such containers may have child-proof caps and desiccant chambers to ensure the efficacy of the product.

The automotive industry uses end-to-end custom containers plastic to meet its parts management needs. Many of these solutions have components that can be stacked and arranged in a way that would reduce the chance of damage while in transit.

Manufacturers of electronics use their containers that are also static-proof made from plastics. Foam inserts can be custom-designed to improve part retention so that sensitive parts are not harmed when delivered.

In e-commerce, custom containers improve the appearance of the brand and, at the same time, offer sturdy protection to various products. These solutions often involve adding elements that would show if somebody has tampered with the packaging and using sustainable material.

Custom plastic Container manufacturers

Designing Custom Plastic Packaging: Factors To Consider

Designing custom plastic packaging involves a thorough analysis of several technical characteristics:

  • Material Properties: The choice of the proper polymer is of great importance. For instance, the properties of PET (Polyethylene Terephthalate) reveal higher barrier properties of moisture and oxygen than the food products. On the other hand, HDPE (High-Density Polyethylene) gives rigidity and shockproofing and is recommended for industrial use.
  • Dimensional Specifications: One has to be very careful with dimensions to fit the packaging perfectly to the product. Applying CAD software can ease the process of the design and even enable creating tests on various conditions, including stacking and transport stresses.
  • Barrier Functionality: It is crucial to evaluate the degree of required barrier properties. Flexible films can be developed to provide improved shielding from the factors of the external environment. For instance, the interconnecting of EVOH layers is essential in enhancing the reduction of oxygen permeability which is important in the extension of the shelf life of some sensitive products.
  • Mechanical Features: Stress analysis conducted before the manufacturing process allows evaluation of the packaging’s ability to withstand deformation. Applying finite element analysis (FEA) can forecast the failure regions under load so that it is resilient enough during distribution.
  • Sustainability Considerations: Specifically, bioplastics, or any work material and components containing recycled content, will help to reduce impacts on the environment. Assess the final disposal solutions for the packaging, that should correspond to the circular economy model, as well as be effective.
  • Aesthetic Design and Branding: Digital or flexographic printing technologies are used to deliver high-quality graphics that give the brand better visibility. Think about the feeling and the look which may become some factors affecting the consumer’s decision process.
  • Functional Design Elements: Add-ons such as child-proofing or handles as part of the cap design present major challenges at the engineering level. These elements must be made for usability tests and safety standards to follow the industry’s standards.
  • Regulatory Standards: Carefully check compliance with the US FDA regulations for food contact materials, or ISO 9001/2000 regulations for medication packaging. This includes the testing for migration levels and the testing for labeling requirements.
  • Cost Optimization: It is recommended to carry out a cost-benefit analysis at the design stage. This entails the assessment of material costs, manufacturing processes such as injection molding over blow molding, and probable savings on transportation resulting from optimizing the dimensions of the packaging.
  • Manufacturing Feasibility: Consult the manufacturers as soon as possible in the design phase so that the packaging can be made effectively. Evaluate the tooling needed to be completed and the manufacturing schedule so that the project is not slowed down when it is being produced.

Available Sizes For Custom Plastic Containers

Most plastic containers can be made to fit different sizes that can suit different industry types. Here’s a detailed look at common sizes and their applications:

Small Containers (100-500 mL):

These tiny tubs are perfect for portioned products or as a way to allow customers to try your products. Cosmetics employ them for lotions or creams while food industries use them in packaging sauces or dressings. This makes them easy to handle and store, factors that consumers who want easy-to-handle and portioned products consider.

Medium Containers (500 mL – 2 L):

The middle-sized containers are ideal packaging for all kinds of products. It is normally applied to household articles including cleaning products or washing commodities for example shampoos. This size is optimal in terms of capacity and at the same time not too big to be managed for retail sales and at the same time large enough to accommodate bulk sales.

Large Containers (2 L – 10 L):

There is always a need for extended packaging, and large containers are often used to meet these requirements. They find their application in food industries for the storage of food products like oils or marinades, storage of industrial chemicals, and cleaning solutions. They are useful when it comes to an operation that needs large quantities for storage and ease of transportation.

Extra-Large Containers (10 L and above):

Extra-large containers are intended for the industrial segment because they are designed for intensive use. This type of container is vital in the manufacturing industries, transportation, and material handling industries. They are well-built to provide safety and enable the carriage of large volumes of either liquids or other materials.

Custom Shapes and Sizes:

Apart from the basic dimensions, value-added packaging allows for the creation of containers tailored to particular uses. This could be, for example, shapes that allow for the optimal positioning of one container on top of another or functional add-ons such as handles or spouts. There is efficient storage and transportation of the products since sizes are tailored to match the actual needs hence minimizing wastage and improving the experience of every user.

Custom containers plastic

How Much Does Custom Plastic Containers Cost?

The cost of custom plastic containers depends on the type of material used, the size, and the quantity that will be produced in this case the cost will greatly differ. Here’s a more detailed breakdown:

Tipo de material

The cost is most affected by the type of polymer used. For instance, PET (Polyethylene Terephthalate) containers cost from $0.70 up to $3.00 per piece. It is popular for its high barrier properties and transparency, thus commonly used in food and beverage packaging. HDPE (High-Density Polyethylene) containers on the other hand, which range from $0.50 to $2.00 are usually used for household products because of their impact strength.

Container Size and Design

Pricing also depends on the size of the product. In the case of small containers (100-500 mL), the cost ranges from $0.50 to $3.00 per unit. These are best used where you are only going to use the container once, such as for holding sauce or cosmetics. Small containers (from 500 mL up to two liters) can cost from $2,00 to $5,00 ideal for shampoo or cleaning solutions. The cost rises with size, so large containers, 2L-10L, are $5.00-$15.00 because of the materials and manufacturing.

Volumen de producción

The results indicate that production volume is a determinant of the unit cost. Bulk purchases, in particular, can be made at a much cheaper price per unit. For example, if an organization placed an order for 10,000 units, the price per small container could be $1.00 while if an order is small, the price might be $2.50-$3.00 each. This is because, through economy of scale, the manufacturers can justify the setup and tooling costs against a larger number of units to be produced.

Customization Features

Custom features also directly increase costs; this includes unique colors and logos that may be printed on the equipment. For example, containers with special printing could cost an extra $1.00 to $3.00 per unit. Add-ons such as tamper-evident seals or particular caps also come at $0.10-$0.50 depending on their design and operation.

Tooling and Setup Fees

This is particularly so because initial tooling and mold costs may be high. The price for custom molds ranges from $5000 to $50000 depending on the design of the mold. Such costs are usually spread throughout the production cycle, and hence form part and parcel of the cost per unit, but are less sensitive to the size of the order.

Shipping and Handling

Finally, the cost of shipping has to be considered. While it may be cheaper to have the whole order shipped at once, per-item shipping can be cheaper with many items. Shipping was found to range from $0.20 to $1.00 per unit depending on the distance and the carrier chosen.

From these estimates, one can get a feel of the costs likely to be incurred in the production of custom plastic containers but as with most things, it is always a good idea to contact plastic container manufacturers for the most precise estimates, if you want to know more about cost about plastic products, you can go to costo del moldeo por inyección post to know more detail, or send us your custom plastic containers that we will quote you a price.

Technical Aspects for Custom Plastic Containers

Select materials that exhibit particular mechanical characteristics like tensile strength, flexural modulus, and impact strength. Use PET, which is known for its high clarity and moisture barrier, and HDPE which has a high toughness and chemical resistance. The performance of the material under operating conditions must be defined by stress-strain analysis and thermal analysis (DSC).

Tolerances of Dimensions and Geometry Optimization

Set tight tolerance levels on the dimensions using CAD tools to achieve good manufacturing. Utilize such geometrical optimization procedures that would allow the production of the minimum weight feasible whilst still sustaining the strength of structures. It can help to analyze the wall thickness variation and draft angles of the product to help facilitate better diseño de moldes and therefore, lower production costs.

Finite Element Analysis (FEA)

Appeal to FEA to model planar mechanical response to different loads. This analysis is useful in determining failure modes and can be used to make changes in the design by increasing thickness or putting ribs and gussets where stresses are high. Apply results for the container’s design to maximize its shape for better load distribution and to reduce the container’s chances of deformation during handling and transportation.

Barrier Property Engineering

Create layers of shielding that help to protect against oxygen, moisture, and ultraviolet light. Include EVOH or sorbents within the barrier layers as the means to extend the shelf life for the product in question. Conduct the permeation test to evaluate the efficiency of the barrier layers and conformity with the products’ storage standards.

Thermal and Processing Characteristics

Do thermal analysis to determine if the material will be stable under processing conditions as identified by Tm and Tg. Studying the thermal conductivity of the selected materials and how it will affect the performance of the stored and transported produce concerning temperature changes.

Regulatory Compliance and Safety Standards

Regulatory compliance and safety standards are major challenges that business organizations encounter when handling their correspondents’ mail. Make sure that compliance with the design also includes country/region-specific codes applicable to the food processing industry, FDA compliance for food-related items, or ISO for the pharmaceutical industry. Perform migration test to determine the possibility of substances leaching out of the container. Keep very detailed records for the purpose of compliance along with quality reassurance.

Tools Designed Methodologies

Choose the right technological process of manufacturing (injection molding, blow molding, thermoforming, etc.) considering the level of detail and quantity of products. The gate area as well as the cooling channel design should be analyzed to minimize cycle time and reduce defects. Ensure that the design concept works in practice by partnering with the manufacturers who can provide critique and input on the project’s actual practicality of the design.

Envases de plástico personalizados

Techniques For Manufacturing Custom Plastic Containers

Custom plastic Container manufacturers employ certain techniques for fabricating plastic containers. Some common techniques include;

1. Injection Molding

Injection molding is an accurate process of manufacturing in which pellets of thermoplastic are made to melt and are then injected at high pressure into the mold cavity. In the mold design, it must be taken into consideration that the polymer used shrinks at certain rates. The cooling phase is essential since it freezes the plastic and demands the best cooling channel design to minimize the cycle time and promote equal cooling. This method is suitable for mass production of intricate shapes and produces near-net components with good dimensional tolerances and surface finishes.

2. Blow Molding

Blow molding is a process of making hollow plastic items through the process of blowing up a parison. It involves heating the thermoplastic material and then shaping it into a parison and finally, it is clamped on a mold. This is done through high-pressure air being introduced into the parison thus causing it to expand and push against the walls of the mold. Parameters of parison temperature, mold temperature, and air pressure have to be maintained at optimal levels to obtain identical wall thickness and to minimize such defects as sagging or improper blowout.

3. Thermoforming

Thermoforming is the action of heating a thermoplastic sheet to the point where it gains its flexibility and then draping it over a mold and applying vacuum or pressure to give it the required form. These concerns are heating temperature, heating time, and the mold design where features such as vents that allow air escape during formation can be fabricated. The cooling phase is important for holding the shape as well as the dimensional stability of the material. This method is most appropriate for fewer runs and simple geometries as compared with injection molding.

4. Rotational Molding

Rotational molding uses a powdered plastic that is put into a closed mold, the mold is heated and rotated along two perpendicular axes. When the mold is in rotation, the powder melts and forms a layer on the surface of the mold, thus making it a hollow part. The symmetry of the wall thickness is the foremost factor, which is dependent on the rotation rate and heating duration. This method is also suitable for large parts that are used for such applications as storage tanks where accuracy, material consumption, and the possibility of including inserts in the mold are critical.

5. Extrusion

Extrusion is the process whereby plastic pellets are heated and then put through a die to produce a continuous shape of sheeting, tubes, or profiles. The flow properties as well as the final dimensions of the article depend on the barrel temperature, screw speed, and die design. It also plays a vital role in ensuring shape integrity, normally by way of water baths and or air cooling. Extrusion is very cost-effective for high-volume production of regular cross sections and is often followed by secondary operations to provide finishing.

6. Amalgamated Manufacturing/ Additive Manufacturing/ 3D Printing

Additive manufacturing is a process of building up a part layer by layer from a digital model of the component to be produced using 3D Printing. It uses thermoplastics and photopolymers among others, and each layer is accurately either deposited or cured. These are the layer height, print speed, and infill density, these parameters determine the mechanical strength and surface quality of a final part. This kind of production is very useful in rapid prototyping and custom production where someone wants his product to be unique but lacks the high-speed production needed for bulk production.

7. Pressure Forming

Pressure forming is an improvement of the thermoforming process in that heat and positive pressure are used to form the plastic sheet. This technique affords higher detail and better draws compared to the common thermoforming in view of this it is appropriate for high fidelity. This means that the process parameters such as pressure, heating time, and cooling methods are critical in the process. There may also be additional features for air extraction and for controlling the flow of the material during forming.

Custom Plastic Containers with lids

Benefits and Limitations of Custom Plastic Containers:

Here’s a table outlining the benefits and limitations of custom plastic containers:

Aspecto Beneficios Limitaciones
Personalización Tailored designs to meet specific needs. Higher initial costs for custom molds and tooling.
Variedad de materiales Wide range of materials available (e.g., PET, HDPE). Limited thermal resistance for some materials.
Ligero Reduces shipping costs and enhances portability. May lack durability compared to heavier materials.
Rentabilidad Economies of scale for large production runs. Smaller runs can lead to higher per-unit costs.
Barrier Properties Excellent moisture and oxygen barrier options. Not suitable for all chemical applications.
Flexibilidad de diseño Complex shapes and features can be easily integrated. Tooling for complex designs can be expensive.
Sustainability Options for recyclable and biodegradable materials. The environmental impact of plastic waste remains.
Production Speed Fast production times for high-volume orders. Slower for low-volume or one-off custom projects.
Aesthetic Appeal High-quality surface finishes and branding options. Some finishes may require additional processing.

Types of Materials for Custom Plastic Containers

The are many types of plastic materials are used to make palstic containers, below are common materials are mostly used for csutom plastic contatiners manufacturing.

  1. Tereftalato de polietileno (PET)
    PET is a lightweight, clear plastic that is highly resistant to moisture and offers excellent durability. It’s commonly used for water bottles and food packaging because it preserves freshness and prevents contamination. Its recyclability makes it a popular eco-friendly choice. Go to PET injection mlding para saber más.
  2. High-Density Polyethylene (HDPE)
    HDPE is a strong, dense plastic known for its toughness and resistance to chemicals and impacts. It’s used for containers like milk jugs and detergent bottles. HDPE is less prone to cracking and is widely recycled, contributing to its popularity for packaging. If you want to know more about HDPE material you can go to Moldeo por inyección de HDPE página.
  3. Polipropileno (PP)
    PP is a versatile plastic with a high melting point, making it ideal for items like food containers that need to withstand microwave heating. It is also durable, lightweight, and resists chemicals, making it suitable for various household and industrial products. Go to Moldeo por inyección de polipropileno para saber más.
  4. Cloruro de polivinilo (PVC)
    PVC is a durable plastic that can be either flexible or rigid. It’s often used in food wrap, medical containers, and plumbing pipes. While highly versatile and cost-effective, PVC requires special recycling processes due to its chemical composition. Go to PVC injection pipe fitting mold para saber más.
  5. Low-Density Polyethylene (LDPE)
    LDPE is softer and more flexible than HDPE, making it ideal for squeeze bottles, grocery bags, and cling wrap. It offers good resistance to moisture but isn’t as strong as HDPE. Its flexibility and transparency make it useful for various packaging applications. Go to Moldeo por inyección de PE para saber más.
  6. Acrilonitrilo butadieno estireno (ABS)
    ABS is a tough, impact-resistant plastic often used in products like electronics housings and automotive parts. It’s known for its rigidity and ability to withstand high-stress environments. Its glossy finish and strength make it ideal for durable consumer goods. Go to Moldeo por inyección de ABS para saber más.
  7. Poliestireno (PS)
    Polystyrene can be either rigid or foamed. It’s commonly used in disposable cups, food containers, and insulation materials. While affordable and versatile, it’s less eco-friendly because it’s harder to recycle and often used in single-use products. Go to Moldeo por inyección de PS pgae to know more.
  8. Ethylene Vinyl Alcohol (EVOH)
    EVOH is a plastic with excellent barrier properties, particularly against gases like oxygen, making it perfect for food packaging that needs to preserve freshness. While not used on its own for structural purposes, it’s often combined with other plastics to improve their performance.
  9. Policarbonato (PC)
    Polycarbonate is known for its transparency and toughness. It’s often used in products like reusable water bottles, eyewear lenses, and protective panels. PC is valued for its strength, but care must be taken as it may contain BPA, a chemical of concern in some applications. Go to moldeo por inyección de policarbonato para saber más.
  10. Bioplastics (PLA, PHA)
    Bioplastics such as Polylactic Acid (PLA) and Polyhydroxyalkanoates (PHA) are derived from renewable resources like corn starch or sugarcane. PLA is commonly used for compostable food packaging, while PHA is more durable and used in medical and agricultural applications. Both are praised for their reduced environmental impact compared to traditional plastics.

custom plastic containers

Final Summary

In conclusion, the application of creating custom plastic containers demands the selection of the right material and manufacturing processes appropriate to the use of the containers. These include mechanical properties, chemical compatibility, and rate of fabrication. Injection molding, blow molding, and 3D printing are some of the more sophisticated manufacturing techniques that each has its strengths which need to be balanced against cost, volume, and complexity of design. By applying these findings, the manufacturers can enhance the utilitarian and ecological features of plastic containers along with meeting sectoral regulations.

Preguntas frecuentes

Q1. What factors influence material selection for plastic containers?

Factors that determine material choice include; chemical resistance, mechanical properties, thermal properties, and statutory requirements. Such characteristics guarantee the containers meet the precise requirements of the applications they are used for, not to mention safety.

Q2. How does the manufacturing method affect costs?

The decision of how to make a product affects costs by factors such as tooling costs, the number of parts produced, and the time taken to produce each part. For example, technologies such as moldeo por inyección where a large number of items are produced at once, minimize costs where many items are being produced at once.

Q3. What are the benefits of using bioplastics?

One, bioplastics are manufactured from renewable resources, and the majority of them are biodegradable. It can enhance a brand’s sustainability position and parents looking for a suitable brand of products that use socially conscious packaging materials.

Q4. How do plastic container manufacturers ensure safety compliance?

The plastic container manufacturers can guarantee safety by carrying out tests of migration and leaching while also obeying the safety measures of the various industries. Recording and tracking of such materials utilized in the production process is critical to validation and conformity to safety requirements.

Armarios militares a medida

Armarios militares mecanizados a medida are blonging to military supplies, which have high quality requirement on both material and manufacutring. If you are involved in the electronics or computer industry then you are well aware of enclosures like PCB enclosures or electronic boxes etc. They improve the efficiency of the devices and also organize and shield inner parts from various outside factors.

While designing an electronic custom rugged military enclosure, the following aspects should be taken into consideration. One of the most important is to guarantee that the final product stays affordable at the end of the day. Subconscious choices can reduce costs including choices of material, surface finishes, and other options in the manufacturing process.

In this article, I will describe the steps necessary for designing an application-specific enclosure for an electronic product and will emphasize the goals of efficiency and cost optimization.

aluminum enclosure

Custom Rugged Military Enclosures Design Process

There are several crucial phases through which the custom enclosure design is taken to achieve certain functions, appearance, and fabrication. Here’s an overview of the key phases in designing a custom fugged military enclosures:

1. Define Requirements

Start with an understanding of the need to fully specify the project scope. These are; the application for which the product is intended, the conditions it will work under, and any standards that the product has to meet. Other considerations also include size, weight, and the appearance of the equipment should also be considered.

2. Material Selection

Selecting the appropriate materials is a core factor as far as efficiency and expenses are concerned. These are aluminum, steel, and various types of plastics some of the advantages being strength, weight, and heat dissipation. To choose the materials the environment of the enclosure should be considered so that it can offer the required protection against moisture, dust, and thermal changes.

3. Conceptual Design

Once requirements and materials are established then pass on to the generation of some primitive ideas. This phase may include drawing and prototyping, to make a layman’s conceptualization of the enclosure and how it will be used. It is possible to work with engineering teams to do further tuning on these concepts and to discover other potential design problems.

4. Prototyping

The idea of creating a prototype is useful to get feedback on the design before going into large-scale production. Using the example of 3D printing, one can acknowledge that it is easy to make changes during the process of product development since the process of prototyping is very fast. Fit, form, and function are all examined with prototypes so that all parts are known to fit as planned.

5. Testing and Validation

It is possible to write with ease the algorithm that defines the necessary questions, but to come out with a valid prototype on the first try may not be possible as what is required next is critical testing of the prototype to determine how well it is going to perform. These are mechanical integrity, thermal, and environmental protection checks. If any problems exist during testing then the solution should be a design modification.

6. Final Design Adjustments

Using the results of the testing again make the necessary changes to arrive at the final look and feel of the UI/UX. This may entail changing dimensions, modifying mounting features, or changing the material to improve the performance and affect the cost.

7. Production Planning

After defining the design, it is necessary to come up with a plan for production, manufacturing processes, tools necessary, and expenses. Cooperate with manufacturers to guarantee that the production processes correspond to design requirements as well as manufacturing quality control procedures.

8. Manufacturing

After the production plan, the manufacturing phase starts with the production of the new product. This entails the crafting of the actual enclosures from the chosen material and manufacturing processes. Play is also plausible by monitoring the quality of products on the production line to ensure that the designs are not distorted.

9. Assembly and Quality Assurance

After manufacturing, the enclosures experience the assembling process and are then subjected to quality control tests. This will help to ensure that all components are well installed in the final product and that such product meets the needed standard as it is taken to the markets to be sold to the customers.

10. Feedback and Iteration

Last of all effectiveness check post-deployment with the users and the stakeholders. This information is useful in future designs and is an important source of feedback that can be used to enhance future designs.

custom rugged military enclosure

Different Methods Used to Manufacture Custom Machined Military Enclosures

Machining is a very flexible manufacturing process frequently used in assembling customized enclosures, especially where accuracy and intricate features are important. It is a material removal process in which the workpiece is produced from a solid block or sheet of the material by cutting away unwanted material. As mentioned above, here is a brief of the basic machining strategies used in the construction of custom enclosures and their relative merits.

CNC Milling

CNC (Computer Numerical Control) milling is the process that uses state-of-the-art computer-operated machines to progressively cut material from a workpiece. This technique works well where the required cross-sectional shape is diverse, for example, cut-out slots, undercuts, or precise locating dimples. CNC milling allows for a wide variety of materials, which include different types of metals and plastics, and therefore can be used in a variety of applications, from lightweight electronics casings to heavy-duty industrial coverings. Its advantages for high-speed machining and multi-axis operation also improve design freedom and accuracy.

CNC Turning

CNC turning is used in the production of cylindrical parts where the workpiece is revolved with a cutting instrument. The process is optimal for making the CNC aluminum enclosure parts such as cylindrical casings, end covers, and threaded parts. CNC turning is precise and consistent allowing the production of close tolerances necessary for parts that need to fit well and perform their intended functions. This method also allows for fast cycle times, thus it is ideal for short and long runs.

Waterjet Cutting

Waterjet cutting takes advantage of a high-pressure water jet, which may be accompanied by abrasive granules for cutting operation for the different types of material suitable for waterjet cutting such as metals, plastics, and glass. This technique has a special feature of providing sharp edges and at the same time preventing the formation of thermal distortion, which is very useful for creating complex patterns and thin-walled products. Waterjet cutting also proves advantageous when manufacturing enclosures that require specific shapes or panels that require large contours, while still allowing manufacturers to manufacture highly detailed enclosures without adverse effects on the material.

Laser Cutting

Laser cutting entails the use of laser light to cut through a material to the desired thinness with a lot of precision. The technique is also preferred for thin material because the intricacy of the design and achieved surface smoothness is highly probable when using this technique. Some of the uses include making panels, lids, and flat parts of enclosures. Due to the high speed and accuracy of laser cutting, it can be effectively used both in the prototyping stage and in the mass production of products, which will benefit manufacturers in terms of time and quality.

CNC Routing

Routing operation uses a rotating cutting tool to cut material from the surface of a workpiece. It is frequently applied to produce flat parts like panels and covers and can accommodate any type of material, wood, plastic, or metal. It is advisable in the routing since it can be done in detail and applied to branding, labeling, and other features such as cutouts on the enclosures.

Electrical Discharge Machining (EDM)

Mecanizado por descarga eléctrica (EDM) is another nontraditional, computer-controlled machining technology that utilizes sparks to remove material from work pieces.

EDM is a non-conventional machining process that utilizes an electric spark to remove material from the electrically conductive material. This method offers the best way of developing narrow sections, undercuts, slots, and holes which would otherwise be challenging to make using regular cutting instruments. EDM is most suitable in making molds and dies on the enclosure parts, where accuracy and good surface finish are desirable.

rugged military enclosure

Considerations for Precision and Other Factors in Machining Custom Enclosures

When using machining to manufacture custom enclosures, there are many precision factors and concerns involved to achieve the right outcome and functionality. Here are the key aspects to consider:

1. Tolerances

Tolerances established the level of variation in the dimensions of the enclosure. Machining with high levels of accuracy can be done to precise limits of tolerance, which is very important where the components require a high level of accuracy such as a tolerance of ± 0.001 inches or better. It is crucial to comprehend the necessary tolerances so that assembled components won’t have problems in their operation.

2. Material Choice

Machinability depends on the type of material to be processed and the precision to be achieved in the final product. For example, working with metal, such as aluminum or stainless, allows achieving very precise interferences, while when working with plastic materials, some kind of precautions must be taken to avoid deformation of the material. To achieve the best result it is crucial to select a material that will satisfy the need of performance as well as the potential of the machining method.

3. Machining Method

Precision is affected by the kind of machining method chosen. CNC milling and turning provide high accuracy of the workpiece, and water jet cutting and laser cutting provide very good edge quality although the accuracy may vary depending on the thickness and type of material being cut. This decision depends on the complexity of the design and the degree of accuracy needed to determine the best approach.

4. Tooling

The type and condition of tooling greatly affect the level of accuracy of machining. Tools that are of high quality and sharp with specific cutting edges can deliver the best standards of cutting the material with less tolerance. Great care must be taken to see that tools used in forging are well selected and maintained appropriately to retain suitable accuracy.

5. Fixturing

Correct clamping means that the workpiece is well secured in position during the machining process, and will not shift around leading to unsatisfied tolerances. Good location of fixtures ensures that there is little or no deviation from the machining process and also allows for several operations to be conducted ensuring high accuracy.

6. Machine Calibration

Machining equipment needs to be calibrated always to ensure that the desired accuracy is achieved. It is suggested that machines should be checked and adjusted to guarantee that the deviations from their ideal values are within a particular range. This is especially the case with CNC machines where even slight variations can be a large source of error in the production of the final product.

7. Surface Finish

The required surface finish thus influences the enclosure’s performance, appearance, and construction. Various types of machining operations produce surfaces of different characteristics, therefore, the required surface finish should be agreed upon at the design stage. Further finishing may be necessary for obtaining the final finish; for example, sanding, painting, electricplating, polishing, or anodizing.

8. Production Volume

A consideration of precision may be affected by the expected production volume. When it comes to mass production, the quality and accuracy of the product become very important for every part that is being produced. On the other hand, low run volumes or prototype runs may afford greater tolerance and surface finish perimeters.

9. Thermal Management

Machining operations may produce heat that in turn alters the properties of the material and its accuracy. When using flood cooling or misting, it is possible to prevent dimensional changes during the process of machining.

Armarios militares mecanizados a medida

Choosing the Right Finish for Custom Enclosure Designs

Choosing the right finish for custom enclosures is critical since it defines the unit’s utility and appearance. This element determines the resistance, the look, and the efficiency of the product. Below are some of the above-mentioned finishing techniques and the features associated with each of them.

1. Anodizing

The anodizing process forms a chromate coating on the surface of the aluminum enclosure to act as a shield to the metal part. The next layer increases the level of corrosion protection. Its thickness usually varies between 5 and 25 microns. This also enables various colors which have an aesthetic touch to the whole structure.

2. Powder Coating

Powder coating is the process of applying a dry powder that needs heat to be applied and to dry. This leads to an external layer that is rather delicate and quite hard to penetrate. Layer thickness normally ranges from 40 to 100 microns. It is available in diverse colors and finishes and therefore has a good appearance.

3. Galvanoplastia

Electroplating is a process of plating one metal onto a substrate by depositing a thin layer of that metal on the substrate. Some of the everyday metals are nickel and chrome. The layer thickness range is from 1 to 25 microns. This method increases the corrosion protection and gives a shiny look to the surface of the article.

4. Painting

Painting is a process of applying liquid paint onto the surface of the enclosure. This method provides a lot of opportunities to choose a color and design. Usually, the layer thickness varies from 25 to 75 microns. While it gives the building an environmental appearance, the work may need frequent touch-ups after some time.

5. Brushed Finish

A brushed finish is a surface finish obtained by using abrasives to provide a textured surface. This technique does not add extra bulk to the process. It mainly changes the surface roughness. It gives a different appearance and a little bit of protection from rust.

6. Polishing

Polishing has the effect of making the surface reflective. This process reduces thickness but does not add material to the workpiece. It also improves the aesthetic value of the enclosure. The smoothness of surfaces also enhances corrosion.

Military Specifications for Custom Enclosures

Military applications require high accuracy enclosures which should be designed and produced under the Mil-Spec requirements. These custom rugged military enclosures must have high mechanical strength, and high corrosion resistance, and have to be produced within very close tolerances. This is a good reason why thorough quality control must be applied in the entire manufacturing process to ensure that the product performs as expected. It is common for documentation to be necessary to prove conformity with material and workmanship requirements.

There are other Cajas electrónicas de plástico personalizadas which made by plastic injection molding or machining process, some of those plastic enclousures  are used in the militery industry as well.

Key Compliance Requirements

  • Material Certification: There is also a need to state the type, grade, and specification of the material to be used. Certification guarantees that all materials have the necessary performance characteristics.
  • Certified Material Test Report (CMTR): This report, signed and dated, describes the material type, grade, and specifications, as well as mechanical or chemical characteristics. It is used as a document that comprises quality verifications of the material.
  • Process Certification: Welding, painting, and plating processes for example are required to be certified by the National Aerospace and Defense Contractors Accreditation Program (NADCAP). The purpose of this certification is to guarantee that production processes are commensurate with the requirements of the industry in terms of quality.
  • Manufacturing Origin: In this case, enclosures must be sourced from the USA, or from a country that meets strict guidelines. This is especially important regarding the different regulations governing contracting for military services.
  • DFARS and FAR Compliance: You need to follow the DFARS and FAR strictly. These regulations set out policies on the procurement of defense-related products and guarantee their implementation in the chain.
  • ITAR Compliance: The ITAR regulates the transfer of defense articles and technology both into and out of the United States. It is mandatory for all uses of military products.
  • Testing and Inspection: Sometimes it may be necessary to perform third-party testing to ensure the product does not leak or fail at some point. This commonly includes a First Article Inspection (FAI) that is meant to validate the dimensions of each part or assembly to a tolerance and performance level.

Understanding Your Project Challenges

When entering the projects of custom enclosure, there should be an understanding of certain technical issues that may affect the design and construction. Here’s a focused overview:

1. Design for Manufacturing and Assembly (DFMA)

It is critical to adopt DFM principles in order to realize that new product designs can be effectively produced. This means evaluating geometric characteristics in addition to material type and joining techniques in order to avoid manufacturing difficulties. Working with engineers can help to design parts more effectively, minimize tooling, and reduce the time to cycle.

2. Cost Reduction Strategies

The need to reduce cost during the production of existing products calls for technical analysis of the present manufacturing techniques. This can be in the form of considering material choices for the product, improving the process methodology of machining, or even redesigning parts that can be assembled easily. Value engineering can be used to reduce costs while maintaining the quality of the item.

3. Quality Control Measures

In projects that need high tolerance levels, quality checks and balances must be initiated. By so doing, there is compliance with the set tolerances through the usage of sophisticated equipment like the CMM and the optical comparators. Using statistical quality control provides methods that would assist in controlling the quality of production.

4. Timeliness of Delivery

To solve delivery issues, one has to evaluate production capacity and the time that is taken to deliver products and services. Effectively, organizational change aimed at the application of lean manufacturing improves cycle times and capacity utilization. The use of automated project management systems to monitor the actual state of production schedules guarantees the timely delivery of components.

5. Production Capacity Control

In case of capacity problems, it is necessary to provide a technical evaluation of the current production capacities. Some of the strategies are changing the forecasted production time, shifting resources, or employing flexible manufacturing resources. This can be done without necessarily increasing more units of output and at the same time improving the quality of the product and operational efficiency.

Conclusión

The technical issues in custom enclosure projects are important to be solved to achieve positive results. Design for manufacturability, cost reduction measures, adherence to quality, delivery schedule, and improving production throughput are some of the ways that manufacturers can improve efficiency and gain reliability. Such an action in these areas will not only ensure that it meets the specifications but also enhance the project’s performance and customer satisfaction.

Plástico de calidad alimentaria

7 Types of Food-Grade and Food-Safe Plastics

As far as food safety is concerned, information concerning packaging and storage materials is important. Not all plastics are safe for food contact. So, it is crucial to learn about food-safe plastics. Some insights on making the right choice can go a long way in improving both health and food quality. In this article, you will find out what food-grade and food-safe plastics mean, their main characteristics, the legislation governing them, and their main uses.

What is Food Grade?

Food contact material is safe to use in direct contact with food. These materials have no bitter taste that may affect the food and are included in packaging, cutleries, etc. An economic view of food-grade material is that such items cannot be used in food production if they don’t meet some requirements from authorities, i.e. FDA approval plastics.

What is Food-Grade Plastics?

Food-grade plastics are special plastic types certified by food-contact administrative bodies to come into contact with food. They are subjected to rigors to check their ability to contaminate foods with chemicals or toxins.

Food-Grade plastics

What is Food-Safe Plastics?

Food-safe plastics can be defined as plastics with features and characteristics that make handling, storage, or transportation of food possible. It should be noted these plastics do not disintegrate easily or leach out toxic chemicals when exposed to food, heat, or moisture.

Food-Safe vs. Food-Grade

For “food-safe,” which means that a material is safe for food contact under conditions that are considered standard, “food-grade” means that the material is compliant with the FDA or other regulating bodies. All food-contact plastics are food-safe but not all food-safe materials qualify classified as food-grade.

All You Need to Understand About BPA

Bisphenol A or BPA is a compound used in plastics that can migrate to foods or drinks. Research indicates that BPA may pose some dangers if ingested, therefore; various authorities have sought to limit the use of this chemical in food contact applications. We should pay attention to plastic food wraps labeled as ‘food-grade’ containing BPA, which should be eliminated.

Methods of manufacturing food grade plastic products

The food-grade plastic products require the correct type of direct material, preventive measures against contamination, and a proper processing method. Here’s a breakdown of how to produce food-grade plastic products:

FDA food grade plastic

1. Selection of Raw Materials

The process starts with procuring the best raw materials chosen to meet the actual and required food safety standards. It must not contain chemicals that are toxic and can migrate into foods, examples of this chemical include Bisphenol A (BPA) and phthalates. Plastics allowed include those that meet this status at the international, federal, or state level, i.e. United States Food and Drug Administration (US-FDA) approved plastics are used. Some familiar Food Grade Plastics may include PET, HDPE, PP, and LDPE.

2. Compliance with regulatory standards.

Manufacturers need to ensure that the materials of plastic and additives used are safe for use with foods as identified by the FDA (United States) and the EFSA (Europe). They test to ascertain that no dangerous migratory substances are present on the materials for transfer into food. Food-contact plastics standards, i.e., insist on the purity and composition of the material before the FDA allows them to be used for food storage or packing.

3. Good Manufacturing Practises (GMP)

Production of food-grade plastics involves the adherence to good manufacturing practices (GMP). GMP includes cleanliness, keeping all parts and processes uncontaminated, and cleaning the machines and equipment. This implies that the firm has control over the introduction of raw materials through to the packaging of the final product.

Food-Grade plastic material

Key GMP principles include:

  • Proper Facility Maintenance: Production facilities should be clean and they should not have any contaminants at all.
  • Machine Sterilization: Equipment used for production purposes is always cleaned to eliminate any possible cross-linking with diseases.
  • Employee Hygiene and Training: Employees in the manufacturing of food-grade plastics are trained to handle the product appropriately together with cleanliness.

4. Blow Molding Injection Molding or Extrusion

Outputs start with the selection and quality control of raw materials. Here the plastic is formed by processes such as injection molding or extrusion.

  • Moldeo por inyección: These plastic pellets are melted by heating, and then forced into molds which form containers, bottles, or other shapes.
  • Extrusion: Plastic use involves melting and extruding through a die to form continuous structures common as sheets and films.

Both fabrication techniques ensure accuracy in dimensionality plastic thickness, and strength, which is important for food compliance.

Food safety plastics

5. Testing for Safety and Compliance

Plastic products go through various tests to meet the necessary safety standards. These tests determine the efficiency of chemical leaching, thermal stability, and the service life of the conditioned vegetable oil. Food-contact plastics do not chemically interact with the food-contacting surfaces, and should not be damaged by heat. Besides this, they should not degrade and leach out any dangerous chemicals.

Some of the tests include:

  • Migration Testing: Make sure that the specific chemical migrates into food to an extent not greater than the allowable level even under the stated conditions like heating or freezing.
  • Strength and Durability Testing: Checks for plastic toughness to determine if it will not break or dematerialize.

6. Labeling and Certification

When the food-grade plastic meets all safety and compliance requirements, it gets its official labels. Customers and regulatory bodies such as FDA offer accreditation, to products that work to specified safety measures. Manufacturers like to add claims such as ‘BPA free,’ ‘FDA approved,’ or the recycling symbol that denotes the type of plastic, i.e. 1 for PET, and 2 for HDPE. These labels assist the customer in differentiating between the safety and the appropriateness of the product for food use.

7. Sustainability and Recyclability

Recent years have improved attempts at keeping up with sustainability in food-grade plastics production. Increased consumer awareness is creating pressure on most manufacturers to adopt either post-use-recycled plastic material, i.e. food grade, or look for biodegradable plastics. That is why, ensuring that food-grade plastics are recyclable and are friendly to the environment is an essential factor today.

FDA grade plastic

7 Types of Food-Grade Plastics

Here are some common types of plastics we can use as Food-Grade and Food-Safe;

1. Polyethylene Terephthalate  (PET or PETE)

PET is generally used to make water and soda bottles and food containers, i.e. peanut butter jars. It is light, tough, and very effective in barring moisture hence its use in packaging. PET is also (ed code: 1) highly recyclable but is best used only once as it may degrade if used continually.

2. High-Density Polyethylene (HDPE)

HDPE is used in milk jugs, juice containers, and grocery carry bags. It is non-breakable, hard-wearing, chemical and shock resistant, and it is food safe as it does not contaminate food products. HDPE is a flow category, it is also recyclable material and marked by recycling code “2”.

food grade container

3. Polyvinyl Chloride (PVC)

We can use PVC in containers but avoid it in high-heat applications because it releases toxic chemicals. It is more robust but used least in food preservation particularly where heating is needed and is stamped with code “3.” PVC are mostly used for pipe fitting mold. haga clic aquí to know more about PVC pipe fitting injection molding.

4. Low-Density Poly Ethylene (LDPE)

Examples of products that use LDPE include; bread and frozen food bags and some flexible packaging. This material is light, versatile, and does not absorb moisture. Therefore it can be used to store foods. Besides this, LDPE is recyclable with the code “4”, but it gets recycled more rarely than other materials.

5. Polypropylene (PP)

PP is most commonly used in yogurt cups, disposable and reusable straws, caps of soda, and beer bottles. That is why, it is heat resistant and suitable for food packaging or products that can be heated in a microwave. PP is safe, durable, and recyclable with code ‘5’. Go to is Moldeo por inyección de polipropileno page to know more about this PP material.

Food grade plastic part

6. Polystyrene (PS)

PS is applied as disposable forks, spoons, knives, cups, and plates. It may be lightweight and affordable, but it’s not the best material for long-term food storage because of fears of chemical leaching, especially when exposed to heat. It’s marked with code “6.” Go to Moldeo por inyección de PS para saber más.

7. Polycarbonate (PC)

It is used in reusable water bottles and food storage containers. It may include BPA, a chemical capable of causing health effects. While these materials are strong and transparent, we should pay extra attention not to using products that include BPA. Furthermore, the PC is noted with recycling code 7. Go to moldeo por inyección de policarbonato para saber más.

7 typs of food grade plastic

Key Properties Of 7 Types of Food-Grade Plastics

Here are some important types of plastic along with their properties and applications in different industries;

Plastic Type Recycling Code Common Uses Durabilidad Resistencia al calor Resistencia química BPA-Free Reciclabilidad
Polyethylene Terephthalate (PET or PETE) 1 Beverage bottles, food jars Alto Bajo Moderado Yes Alto
High-Density Polyethylene (HDPE) 2 Milk jugs, juice bottles, grocery bags Muy alto Moderado Alto Yes Alto
Cloruro de polivinilo (PVC) 3 Cling wraps, food containers Moderado Bajo Moderado Can contain BPA Bajo
Low-Density Polyethylene (LDPE) 4 Bread bags, frozen food bags, containers Moderado Bajo Alto Yes Bajo
Polipropileno (PP) 5 Yogurt containers, bottle caps, straws Alto Alto Muy alto Yes Moderado
Poliestireno (PS) 6 Disposable cups, cutlery, plates Moderado Bajo Bajo Can contain BPA Bajo
Policarbonato (PC) 7 Reusable bottles, food storage Muy alto Alto Alto Can contain BPA Bajo

 

Five Prominent Features of Food-Safe Plastics;

The following are key features of Food-safe and Food-grade plastics;

  1. BPA-free and toxin-free
  2. Heat-resistant and durable
  3. Inert to food substances
  4. Odorless and tasteless
  5. Authorized by regulatory authorities (FDA food plastics, EU, etc.)

 

Are there any plastic food bottles Safe?

Yes, food-grade plastic bottles and containers are safe to use for human consumption as long as they have been properly washed up, non-BPA type. FDA must approve such product and it should not be damaged over time.

FDA food grade material

 

Plastic Numbers  Safe for Food Storage

Recyclable plastic types one, two, four, and five, i.e. PET, HDPE, LDPE, and PP are safe for storing foods. Eschew plastics that have a code 3 (PVC), 6 (PS), and 7 (Other) since these plastics contain BPA and other unfriendly chemicals.

FDA food grade plastic spoon

Safe Plastics Number Chart for Food-Grade Plastic

The following table will help us understand what Fodd-Grade plastics are Food-Safe as well;

Plastic Type Safe for Food Contact? Common Use Cases
1 (PET or PETE) Yes Water bottles, containers
2 (HDPE) Yes Milk jugs, juice bottles
3 (PVC) No Cling wraps, containers
4 (LDPE) Yes Bread bags, frozen food bags
5 (PP) Yes Yogurt containers, bottle caps
6 (PS) No Disposable plates, cups
7 (Other) Depends (avoid BPA) Miscellaneous items

Applications for Food Grade and Food Safe Plastics

Here are some common applications of Foof-Grade and Food-Safe plastics;

  • Laboratory consumables such as food trays and food packing materials
  • Beverage bottles
  • Utensils and cutlery
  • Paper bags and foils
  • Industrial Applications Food Processing Equipment

Benefits of Food-Grade and Food-Safe Plastics

Let’s discuss some pros of Food-Grade and Food Safe plastics;

  1. Inexpensive and easy to manage
  2. Durable and shatter-resistant
  3. Resistant to contamination
  4. Versatile and easy to mold
  5. Reusable (if the type of disposable product is taken into consideration)

Food grade containers

Disadvantages of Food-Grade and Food-Safe Plastics

Here are some cons/limitations of Food-Grade and Food-Safe Plastics

  1. Potential for environmental harm (plastic waste)
  2. Some plastics can hardly be disposed of when heated – they emit toxic substances.
  3. Though most are designed to be shop-safe, not all are microwave or dishwasher-safe.
  4. Some have limited alternatives for recycling.
  5. Long-term durability may vary.

Conclusión

In conclusion, Food-grade and food-safe plastics are important components in the food industry’s packaging and preservation solutions. General knowledge of the type of plastic used and the recognition of environmentally friendly products are critical to health and safety. The food and beverages stored will be protected from being contaminated by using BPA-free, FDA food plastics whenever you select them.

Preguntas frecuentes

What does “food grade” mean?

Food-grade means that plastic material can be relayed to the food and it is compliant with legal requirements.

Are BPA-free plastics always safe for food storage?

Yes, BPA-free plastics are a little safer but then make sure that these plastics that you use are food-grade ones.

Can I use any plastic container for food storage?

No, only use containers marked as food-grade or food-safe on their surfaces.

Can the same plastic containers be used again?

Yes, if they are freshly packed, hygienically stored, and in a food contact permissible material. If it’s worn or cracked then recommended not to use it.

What kind of plastic is better for storing food for a longer period?

HDPE and PP plastics are safe for long-term use due to the material’s rigidity and lack of potential chemical reactions.

Why should I avoid plastics labeled with 3, 6, and 7?

These plastics have been known to release pathogens like BPA through heat and moisture impacts.

Molde de fundición a presión

A menudo necesitamos piezas metálicas de diversas formas. Las utilizamos en nuestros coches, casas, máquinas y otras infraestructuras. Se ha preguntado cómo es posible fabricar formas tan detalladas? Molde de fundición a presión tech ha revolucionado nuestras vidas. Con este método se pueden crear formas y patrones complejos. Las piezas moldeadas por fundición a presión están muy extendidas en una amplia gama de aplicaciones.

En este artículo, aprenderemos algunos fundamentos sobre el molde de fundición a presión. Además, será una excelente guía para quienes buscan los mejores servicios de fundición a presión. Aprenderá cómo las fundiciones fabrican los moldes de fundición a presión. Así que, siéntese y lea este artículo detenidamente.

molde de fundición a presión

Visión general de la fundición a presión

La fundición a presión es un famoso tipo de proceso de fundición de metales. Como su nombre indica, este método suele utilizar matrices específicas para el trabajo. La forma de la pieza metálica final depende de la forma de las matrices. Aunque existen diferentes tipos de fundición a presión, la tecnología de base es la misma para todos. El material utilizado para fabricar estos moldes es acero templado para herramientas.

La fundición a presión tiene una larga historia. Se inventó esta tecnología en 1838. Al principio, sólo se utilizaba para imprimir. Más tarde, con el desarrollo de la tecnología, se aprendió a utilizar este método para crear piezas metálicas complejas. La fundición a presión ofrece varias ventajas.

  • El molde de fundición a presión suele ofrecer una alta eficiencia de producción. Esta pieza es comparativamente más rápida que otros procesos de fundición en molde permanente. Como resultado, puede crear cientos de piezas metálicas en menos tiempo.
  • Las piezas moldeadas por fundición a presión suelen tener un acabado superficial liso. En el caso de las piezas metálicas HPDC, esto es más evidente. Como resultado, es posible que no necesite servicios de mecanizado adicionales.
  • El método de fundición a presión es versátil. Suele funcionar con muchos metales, como aluminio, zinc y magnesio.
  • Como este método es rápido, suele reducir los costes de producción. Aunque crear las matrices puede resultar caro, este método es más barato a largo plazo.
  • Las piezas moldeadas por fundición a presión están muy extendidas en muchas industrias. Con este método se fabrican el motor, la caja de cambios y las piezas estructurales de su coche. También puede encontrar aplicaciones similares en otros sectores.

Diferentes tipos de fundición a presión

La fundición a presión suele tener seis tipos principales, cada uno con sus propias ventajas. Cada tipo es adecuado para aplicaciones específicas. Veamos su tecnología particular y el uso del producto.

Tipo #1 HPDC (fundición a alta presión)

Como su nombre indica, este método de fundición a presión requiere alta presión para el trabajo. Este fundición a alta presión empuja técnicamente el metal fundido a todos los rincones del molde. Como resultado, se pueden obtener piezas metálicas muy precisas.

En la industria automovilística, los bloques de motor y las piezas fundidas de la caja de cambios se fabrican con piezas de aluminio HPDC de alta calidad. En la industria médica destacan diversos equipos y bombas de infusión. Además, muchos componentes aeronáuticos también necesitan piezas metálicas de fundición HPDC.

Tipo #2 LPDC (fundición a baja presión)

Este método de fundición a presión es justo lo contrario del HPDC. Requiere una presión baja, que suele oscilar entre 2 y 15 psi. El proceso es casi similar, pero suele ser más lento que el HPDC. Al ser lento, se puede controlar fácilmente el movimiento del metal fundido.

Las piezas metálicas LPDC están muy extendidas en llantas de automóviles, culatas y sistemas de suspensión.

Fundición por gravedad tipo #3

Este método de fundición a presión utiliza la fuerza gravitatoria para llenar el molde con metal fundido. El proceso suele verter el metal fundido en el molde desde arriba, y el líquido fluye hacia abajo. Es sencillo y barato porque no necesita fuerzas adicionales.

En fundición por gravedad es frecuente en la fabricación de accesorios de tubería y diversos utensilios de cocina.

Fundición en Vacío Tipo #4

Como su nombre indica, este método de fundición implica crear un entorno de vacío. Lo hace antes de introducir el metal fundido. Como resultado, no se producen defectos de fundición causados por el gas atrapado en el interior.

La fundición a presión en vacío es adecuada para fabricar componentes delicados. La fundición de componentes electrónicos, piezas de aviones y algunas piezas de automóviles son ejemplos notables.

Fundición a presión tipo #5

La fundición a presión combina la fundición y la forja. Tras inyectar el metal fundido en el interior del molde, el proceso aplica una alta presión durante la solidificación. La presión de compresión reduce principalmente los defectos de porosidad.

La fundición a presión es muy popular debido a la gran resistencia y densidad de las piezas metálicas. Algunos ejemplos comunes son las piezas de suspensión, los soportes y algunos componentes de construcción.

Fundición a presión semisólida tipo #6

Este proceso también combina la fundición y la forja. La única diferencia es que este proceso utiliza metales semisólidos. Tiene la consistencia de una pasta. El SMDC es muy popular para fabricar muchas piezas de automóviles, carcasas electrónicas y dispositivos médicos. ir a fundición a presión de aluminio macizo simi para saber más.

¿Qué es un molde de fundición a presión?

La herramienta utilizada en el método de fundición a presión se denomina generalmente molde de fundición a presión. También se le llama herramienta de fundición a presión. El proceso de fabricación de esta herramienta se conoce como utillaje de fundición a presión.

La definición dice que un molde de fundición a presión es una herramienta única utilizada en el proceso de fundición a presión. Su función principal es dar la forma deseada al metal fundido. En la mayoría de los casos, suelen tener dos mitades: la fija y la móvil.

Cuando ambas mitades se cierran, forman en su interior una cavidad que imita la forma de la pieza deseada. Una pieza de alta calidad molde de fundición a presión es esencial para garantizar la máxima precisión de sus piezas metálicas acabadas. Sin embargo, hay varios componentes:

Cavidad del molde

El espacio hueco dentro de un molde es generalmente la cavidad del molde. En realidad, da la forma y el tamaño de la pieza metálica final. El metal fundido se inyecta en esta cavidad y se solidifica para obtener la forma deseada. Tenga en cuenta que debe garantizar una gran precisión al fabricar esta cavidad.

Molde de fundición a presión para pasador de núcleo

El núcleo es otro componente vital de un molde de fundición a presión. Crea características en la fundición, como orificios o rebajes. Principalmente crea geometrías complejas dentro de la pieza metálica. Sin embargo, en función de las necesidades, puede fabricarse con arena o metal. Tenga en cuenta que este núcleo debe soportar altas presiones y temperaturas durante su funcionamiento.

Pasadores eyectores

Como su nombre indica, estos pasadores básicamente expulsan la mitad móvil del molde de fundición a presión de la fija. Durante el proceso de diseño, los ingenieros los colocan cuidadosamente donde puedan aplicar una presión uniforme. Un diseño correcto garantiza siempre que la pieza no resulte dañada.

Sistema de corredores

El canalizador suele introducir el metal fundido en la cavidad del molde. Consta de varias pistas que se dirigen a distintas partes del molde. El diseño adecuado del sistema de canales es crucial para distribuir uniformemente el metal fundido. En general, un sistema de canalización adecuado reduce significativamente los defectos.

Sistema de rebose

El sistema de rebose recoge el exceso de metal fundido durante el proceso de inyección. Como resultado, el sistema puede evitar los defectos causados por el aire atrapado. Tenga en cuenta que este sistema puede no estar presente en algunos moldes de fundición a presión.

Otros

Elementos como pernos y pasadores mantienen unido el sistema de moldes de fundición a presión. Estas piezas deben ser resistentes y estar cuidadosamente mecanizadas. El método de fundición a presión requiere alta presión, presión de gas y calor. Elegir los materiales adecuados es crucial para mantener estas piezas en buen estado.

Material del molde de fundición a presión: Acero templado para herramientas

El acero templado para herramientas es un tipo general de acero. Tiene varios grados adecuados para un uso específico. Puede conseguir la gran dureza y resistencia del acero mediante el método de tratamiento térmico. Pero, ¿por qué son tan populares estos aceros para herramientas?

En primer lugar, ofrecen una gran resistencia al desgaste. En segundo lugar, su dureza suele hacerlas ideales para muchos trabajos de mecanizado. En tercer lugar, también ofrecen dimensiones estables. Por último, y lo más importante, soportan el calor extremo. Como sabe, esta propiedad es crucial para los trabajos de fundición a presión.

El acero templado para herramientas tiene cinco grupos diferentes. Cada grupo es ideal para aplicaciones únicas.

Material para moldes de fundición en frío

Las cuatro calidades siguientes son ampliamente utilizadas en la fabricación de moldes de fundición a presión.

Grado Carbono Manganeso Silicio Cromo Níquel Molibdeno Vanadio
O6 1.45% 1.00% 1.00% 0.8-1.4%
A3 1.25% 0.50% 5.00% 0.30% 0.9-1.4% 0.8-1.4%
A6 0.70% 1.8-2.5% 0.9-1.2% 0.30% 0.9-1.4%
D2 1.50% 0.45% 0.30% 11.0-13.0% 0.90% 1.00%

equipos para moldes de fundición a presión

Materiales para moldes de fundición a presión en caliente

Como su nombre indica, estos materiales se someten a altas temperaturas durante la fundición. Son ideales para los moldes de fundición a presión HPDC. Existen varios grados: Los grados H1 a H13 suelen ser aleaciones a base de cromo. Por otro lado, las aleaciones de wolframio son de H20 a H39, y las aleaciones a base de molibdeno son de H40 a H59.

Otros tipos

También existen otros tipos de aceros para moldes de fundición a presión. Destacan los aceros SKD61, 8407, DIN 1.2343, 2083 y 8418. Estos aceros ofrecen propiedades específicas. Como sabe, los métodos de fundición a presión tienen diferentes tipos. Por lo tanto, los materiales también varían en función de estos tipos.

Tres tipos comunes de moldes de fundición a presión

En general, podemos dividir los moldes en tres tipos en función del número de cavidades. Esta diversidad se debe principalmente a necesidades específicas. Los distintos diseños de cavidades permiten a los fabricantes de moldes de fundición a presión producir piezas con rapidez.

Tipo #1 Troqueles de una cavidad

Como su nombre indica, estos moldes de fundición a presión tienen una sola cavidad. Con estos moldes se puede producir una pieza metálica por ciclo. La gente utiliza mucho estos moldes para pedidos sencillos y de bajo volumen.

El uso de estas matrices facilita el diseño, lo que constituye su principal ventaja. Sin embargo, la velocidad de salida es más lenta que con las matrices multicavidad.

Tipo #2 Troqueles multicavidad

Las matrices multicavidad tienen más cavidades. Con estos troqueles, puede producir varias piezas metálicas por ciclo. Esto significa que puede producir más productos que con los troqueles de una sola cavidad. Por tanto, las matrices multicavidad son ideales para pedidos de gran volumen.

Lo mejor de estos troqueles es que ofrecen costes de producción más baratos. Sin embargo, suelen tener diseños complejos.

Moldes de la familia #3

En los troqueles multicavidad encontrará el mismo diseño de cavidad pero varias veces. Por lo general, se pueden crear varias piezas metálicas por ciclo. Sin embargo, en los moldes familiares, estos diseños son diferentes. Así que, en cierto sentido, todos los moldes familiares son moldes multicavidades, pero todos los moldes multicavidades no son moldes familiares.

Molde de fundición de aluminio: Tendencias del mercado

El mercado de moldes de aluminio fundido a presión crecerá significativamente en 2024. Según Persistence Market Research, este mercado se valoró en $301,3 millones en 2023. En el futuro, se espera que este sector crezca a un ritmo constante de 4,8% cada año. Los expertos prevén que este mercado alcance los $481,6 millones en 2033.

¿Cómo se fabrican los moldes de fundición a presión?

En la sección anterior, hemos tratado brevemente diversos métodos de fundición a presión y tipos de moldes o utillajes. En esta sección, nos centraremos en general en cómo se fabrican. Conocerá el proceso paso a paso en cada fábrica de fundición a presión. Así, conocerá cada paso de la fabricación de los moldes siempre que planee hacer piezas metálicas únicas. Esto es realmente importante para la fabricación de piezas metálicas personalizadas.

Paso #1 Diseño del molde

Este paso es quizá uno de los aspectos más importantes del proceso. Aquí decidirá cómo desea que sea su pieza metálica y qué pasos habrá que seguir para fabricarla. En función del diseño de la pieza, también debe seleccionarse adecuadamente el tipo de método de fundición a presión.

En este caso, dos parámetros son esenciales: un análisis dimensional y una perspectiva geométrica. La perspectiva dimensional le informa del número de cavidades que tiene su pieza metálica. ¿Cuál de los tipos de molde de cavidad única, de cavidad múltiple o familiar necesita? Este diseño también le facilita la determinación de la presión y el volumen de la pieza fundida.

Una vista geométrica que le informa del nivel de complicación de la pieza metálica y de su plan para abrirla y expulsarla. Sin embargo, es muy importante tener en cuenta el tipo de línea de apertura que se utiliza aquí. Debe asegurarse de que esta línea de apertura coincide con la dirección de apertura del molde.

Del mismo modo, una empresa de fundición a presión también tiene en cuenta otros aspectos importantes durante este paso. Los analizaremos brevemente en la siguiente sección.

Paso #2 Elegir el material

El método de fundición a presión suele implicar presiones y temperaturas variables. Por lo tanto, debe seleccionar un material que sea altamente compatible con estas situaciones. En general, los ingenieros utilizan aquí varios tipos de aceros para herramientas. En la sección anterior, hemos discutido estas herramientas de acero en detalle.

Paso #3 Mecanizado del molde

Una vez listos el diseño y los materiales, hay que planificar cómo dar forma al molde de fundición a presión. En este caso, los distintos métodos de mecanizado desempeñan un papel crucial. Los ingenieros prefieren las máquinas CNC para fabricar moldes de fundición a presión.

Como sabe, el mecanizado CNC ofrece una precisión excepcional. Técnicamente puede alcanzar tolerancias de hasta 0,01 mm. Dispone de opciones como fresado CNC, taladrado, torneado, mandrinado y mucho más.

Etapa #4 Tratamiento térmico

Los distintos tratamientos térmicos son muy importantes en la fabricación de moldes de fundición a presión. Este paso mejora significativamente la resistencia y durabilidad de las piezas mecanizadas. Además, el proceso hace que el molde sea más resistente al desgaste.

Los métodos de tratamiento térmico más comunes son el temple, el revenido, el recocido y el alivio de tensiones. Estos métodos suelen garantizar el buen rendimiento del molde durante la fundición a presión.

Paso #5 Acabado

Tras el tratamiento térmico, el nuevo molde de fundición necesita algunos retoques. Estos pasos son cruciales para garantizar superficies lisas y dimensiones precisas.

Las técnicas de acabado pueden incluir el pulido, el esmerilado y el chorro de arena. El objetivo principal de todas estas técnicas es dar a las piezas del molde de fundición a presión unas texturas más suaves y mejores. Como resultado, pueden alcanzar tolerancias elevadas.

Paso #6 Montaje si es necesario

Hay ocasiones en las que puede ser necesario fabricar piezas de moldes de fundición a presión por separado. Cuando hay muchas piezas, el montaje debe hacerse siempre con cuidado. La fábrica de moldes de fundición a presión siempre comprueba que el montaje esté alineado correctamente.

Paso #7 Pruebas

Una vez realizados todos los pasos anteriores, los fabricantes de moldes de fundición a presión prueban estos moldes en el laboratorio. Realizan pruebas para asegurarse de que el molde está en buen estado y funciona correctamente. Estas pruebas le indican que los moldes son de alta calidad.

molde de fundición a presión

Pasos clave en el diseño de moldes de fundición a presión

Como se mencionó en la última parte, al diseñar un molde de fundición a presión se tienen en cuenta varios factores clave. Esta sección tratará principalmente de ellos y descubrirá por qué son cruciales en la fabricación de moldes de fundición a presión.

Diseño real de la pieza

Antes de fabricar el molde de fundición a presión, los ingenieros crean la pieza en sí. Para este trabajo, utilizan varios programas de dibujo en 2D y 3D. En la mayoría de las fábricas de moldes de fundición a presión, los diseñadores gráficos suelen utilizar SolidWorks o AutoCAD.

Durante las pruebas visuales, se necesitan modelos 2D. Los ingenieros utilizan este dibujo para comprobar los tamaños después de cada fase de producción. Una pieza bien diseñada da resultados de alta calidad. Por eso, siempre que trabajes con un fabricante, asegúrate de que dispone de estos planos antes de empezar a fabricar el producto.

Fundición inyectada Tipo de moldeo por inyección

Se trata de un factor muy importante a la hora de molde de fundición a presión. Por lo general, modifica la calidad, la resistencia y el acabado de la pieza acabada.

En función de esta inyección, existen seis tipos diferentes: HPDC, LPDC, Vacío, etc.

A la hora de diseñar el tipo de inyección, hay que tener en cuenta varios factores. En primer lugar, ¿con qué tipo de metal está trabajando? En segundo lugar, ¿ha tenido en cuenta las líneas de separación, las vistas geométricas y los detalles de diseño? En tercer lugar, ¿cuál es la velocidad de producción prevista?

Si utiliza el tipo de inyección adecuado, el molde siempre se llenará correctamente y los defectos de fundición serán menos frecuentes. Además, la selección correcta reduce en gran medida el tiempo de ciclo. En general, se obtienen muy buenos resultados.

Diseño de puertas y correderas

La compuerta y el canal introducen el metal fundido en el molde de fundición a presión y suelen controlar el flujo del líquido. Un diseño adecuado garantiza un llenado suave y eficaz y reduce diversos tipos de defectos de fundición.

A la hora de diseñar una compuerta y un canal, hay que tener en cuenta el tamaño, la ubicación y la forma. La compuerta debe colocarse en el lugar adecuado para minimizar las turbulencias.

Diseño de la base del molde de fundición a presión

La base del molde suele soportar y alinear todas las piezas del molde. Al diseñar, asegúrese de haber creado un diseño robusto. Proporciona la estabilidad general del sistema.

Aquí debe tener en cuenta el material y la temperatura. La base del molde debe soportar altas presiones y temperaturas. También debe comprobar que la alineación y el ajuste sean correctos.

Sistema de refrigeración

El sistema de refrigeración ayuda al molde a solidificar el metal fundido. Un sistema de refrigeración adecuado suele mejorar la velocidad de producción y la calidad de las piezas. Sin embargo, una refrigeración inadecuada puede causar diversos defectos de fundición. Por tanto, asegúrese de contar con un sistema de refrigeración adecuado al diseñar un molde.

Existen diferentes tipos de sistemas de refrigeración. A menudo se utilizan conductos de agua e insertos de refrigeración. Los tapones de refrigeración son ideales para lugares que necesitan enfriarse rápidamente. Cuando diseñe un sistema de refrigeración de moldes, intente equilibrar el calor en todo el molde.

Sistema de ventilación y expulsión

El sistema de ventilación y expulsión elimina principalmente el aire atrapado en el molde. El aire atrapado puede ser creado por el molde o estar allí antes de la inyección.

Al diseñar un molde, coloque los respiraderos en puntos altos. En este caso, puede utilizar respiraderos finos para evitar destellos. Además, coloque los pasadores de expulsión en el lugar adecuado para evitar daños.

Tenga en cuenta que los sistemas eficaces de ventilación y expulsión suelen mejorar la calidad de las piezas. En general, reduce los tiempos de ciclo y la eficiencia de la producción.

Simulación

Una vez considerados todos los factores anteriores, la simulación le muestra con precisión lo que ha diseñado. Las simulaciones pueden ayudarle a encontrar defectos y problemas con el flujo del metal. Los fabricantes de moldes de fundición a presión suelen utilizar software como MAGMASOFT, ProCAST y Flow-3D.

Preguntas frecuentes

¿Qué metales se utilizan en la fundición a presión?

En la fundición a presión, los metales más comunes son el aluminio, el zinc, el magnesio, el plomo, el estaño y el cobre. Estos metales son populares por su bajo punto de fusión. Además, ofrecen excelentes propiedades de fundición, resistencia y durabilidad. Entre todos estos metales, el aluminio es el más popular. Es ligero y tiene una excelente relación resistencia-peso.

¿Es el 4140 un acero para herramientas?

Sí, el acero LSS 4140 es un tipo de acero para herramientas. Esta aleación ofrece una excelente dureza, resistencia y resistencia al desgaste. Es un acero para herramientas excelente para la mayoría de los trabajos de mecanizado. Más concretamente, se utiliza en diversos componentes giratorios. Destacan, por ejemplo, los ejes, los árboles de transmisión, los engranajes y los husillos.

¿Qué tipo de acero se utiliza para la fundición a presión?

El tipo de acero varía principalmente en función del método de fundición a presión. Para los moldes de fundición a presión HPDC, predominan los aceros para herramientas de la serie H. Por otro lado, para LPDC o trabajos en frío, son famosos los aceros para herramientas de las series O, A y D. También existen algunas calidades especiales, como SKD61, 8407 y 8418.

Resumen

La fundición a presión es crucial para fabricar muchas piezas metálicas complejas. Puede crear piezas de fundición a presión mediante varios métodos. HPDC y LPDC son los dos métodos más comunes que utilizará en una empresa de moldes de fundición a presión.

El molde de fundición a presión tiene tres tipos: de cavidad única, de cavidad múltiple y moldes familiares. Cada tipo es adecuado para requisitos de producción específicos.

Sincere Tech es uno de los 10 mejores fabricantes de moldes en China que ofrece molde de inyección de plástico, molde de fundición a presión. Esta fábrica de moldes ofrece una amplia gama de moldes de plástico y servicios de fundición a presión. Su servicio de atención al cliente también es muy rápido. No dude en ponerse en contacto con nosotros.

Servicio de mecanizado de fresado CNC

Qué es el fresado CNC

Conocimiento de qué es el fresado CNC permite comprender el proceso. Algunos de los temas tratados en este blog son las velocidades de los husillos, los avances, los movimientos de los ejes, los códigos G y los controladores de las máquinas. También describiremos cómo se combinan estas piezas para funcionar como una sola unidad. Hay mucha precisión en el fresado CNC. Hay que qué es el fresado CNC 101 para saber más.

¿Cómo funciona el fresado CNC?

Resumen del proceso

El fresado CNC emplea Códigos G y M. Esto mueve el husillo. La mesa soporta la pieza de trabajo. Qué es el fresado CNC es esencial para aprender. Se utiliza para girar la herramienta de corte. Realizan formas precisas.

Puede cortar a distintas velocidades. Las RPM y el avance son algunos de los parámetros que lo regulan. Los ejes X, Y, Z dictan el proceso. Produce piezas con precisión. Los movimientos están coordinados por el controlador de la máquina.

Qué es el fresado CNC

Programación CNC

El programa indica a la fresadora CNC lo que debe hacer. Utiliza códigos G para los movimientos. Los códigos M controlan las funciones auxiliares. La trayectoria de la herramienta define el movimiento de la herramienta de corte.

Arranca y se para. La velocidad del cabezal importa. Se introducen parámetros para cada eje. Esto garantiza un mecanizado preciso. Se utiliza antes del corte para comprobar si hay errores. El controlador CNC recibe e interpreta los comandos.

Movimientos de la máquina

Los movimientos de las máquinas en el fresado CNC son precisos. Esto incluye el eje X, el eje Y y el eje Z. El husillo gira. Corta el material. La linealidad controla la herramienta.

Establecen las velocidades de avance y las profundidades. Las entradas se controlan mediante el panel de control. De este modo se garantiza una precisión que permite obtener piezas perfectas. Los servomotores controlan la velocidad. Las fresadoras CNC crean formas precisas.

Herramientas de corte

Las herramientas de corte en las fresadoras CNC son significativas. Qué es el fresado CNC le ayudará a entenderlo mejor. Para ello se utilizan fresas y brocas. El portaherramientas las fija. Giran rápidamente. Cortan el material.

Influyen parámetros como las RPM. El número de estrías es importante. Influye en el arranque de viruta. El husillo sujeta firmemente la herramienta. Esto garantiza cortes limpios. Una herramienta crea formas diferentes.

¿Cuáles son los principales componentes de una fresadora CNC?

Bastidor de la máquina

El bastidor soporta todos los demás componentes de una máquina CNC. En ésta, es fuerte y estable. Requieren una base fuerte. Esta está hecha de metal.

Algunas de las piezas son raíles, tornillos y pernos. Mantienen la estabilidad de la máquina. La precisión es muy importante en el proceso de fresado CNC. Esto significa que los pequeños errores pueden arruinar las piezas.

El armazón debe ser rígido. Algunos bastidores son de hierro. Pesan mucho. Los bastidores pueden tener diferentes formas. Esto ayuda a sostener la máquina. Los bastidores deben estar bien construidos.

Eje

El husillo es fundamental para el fresado CNC. Qué es el fresado CNC es bueno saberlo. Gira rápido. Este puede llegar a muchas RPM como. Sujeta las herramientas de corte. Se balancea hacia arriba y hacia abajo. Esto hace agujeros. Los husillos utilizan rodamientos.

Reducen la fricción. Lo mantienen frío. La velocidad del husillo es importante. Las velocidades más rápidas cortan más rápido. Necesita ventiladores de refrigeración. Algunos husillos son eléctricos. Otros utilizan aire. Esta parte es crucial. Por eso se fabrica con esmero.

Panel de control

El panel de control maneja la máquina CNC. Tiene muchos botones. Aquí es donde se introducen los comandos. Las pantallas muestran los ajustes. Le ayudan a seguir el proceso. El panel tiene una CPU. Ejecuta programas.

Puede ser una pantalla táctil. Los controles son muy precisos. Las entradas se realizan mediante códigos G. Estos indican a la máquina lo que debe hacer. Los interruptores de seguridad son importantes. El panel debe ser fácil de usar. Hace posible el fresado CNC.

Motores Axis

Los motores de los ejes transportan las piezas CNC. Qué es el fresado CNC es interesante saberlo. Regulan el movimiento en las direcciones X, Y y Z. Permite movimientos precisos. Estos pueden ser de hasta micras.

Utilizan motores paso a paso. Proporcionan un control exacto. Los motores son potentes. Esto ayuda con las cantidades de piezas. Los motores requieren refrigeración. Pueden calentarse. Esto significa que los motores de eje requieren fiabilidad. Por eso están bien ingeniería. Una configuración adecuada es crucial.

Cambiador de herramientas

El cambiador de herramientas funciona muy rápido. Tiene capacidad para varias herramientas. Puede ser automático. Reduce el tiempo de inactividad. Es importante que las herramientas estén afiladas. Las cambia rápidamente. Disponen de sensores. Esto garantiza una colocación correcta. El cambiador de herramientas tiene un almacén. En él se almacenan las herramientas.

Es crucial para aumentar la productividad. Todas las herramientas cumplen una función determinada. Cambiarlas debe ser rápido. Hay que tener en cuenta que todo el proceso está totalmente automatizado. Esto hace que el fresado CNC sea eficaz.

Fresado y mecanizado CNC

Componente Función Material Modelos comunes Especificaciones Mantenimiento
Bastidor de la máquina Apoyo estructural Hierro fundido, acero Haas VF-2, DMG MORI Peso: 2.000-3.000 kg Lubricación, limpieza
Eje Gira la herramienta de corte Acero aleado BT40, HSK63 RPM: 12,000-30,000 Inspección de rodamientos
Panel de control Interfaz de usuario Plástico, metal FANUC, Siemens Pantalla: 10-15 pulgadas Actualizaciones de software
Motores Axis Acciona el movimiento de los ejes Aluminio, acero NEMA 23, Servomotores Par: 2-10 Nm Controles de alineación
Cambiador de herramientas Conmuta las herramientas de corte Acero, aluminio Paraguas, Carrusel Capacidad: 10-30 herramientas Comprobaciones neumáticas

Tabla de los principales componentes de una fresadora CNC

¿Qué materiales pueden fresarse con máquinas CNC?

Metales

El fresado CNC da forma a metales como el acero y el aluminio. Tiene un husillo que gira a 8000 RPM. La precisión de esta máquina es de 0,001. El cabezal de la herramienta se desplaza en las direcciones X, Y, Z.

Pueden cambiar de herramienta indistintamente. Eso ahorra tiempo. El refrigerante mantiene bajas las temperaturas. Las virutas se desprenden de la pieza. Los archivos CAD se utilizan como referencia.

La unidad de control de la máquina sigue el programa. Así se consiguen formas complejas. El metal desarrolla bordes lisos. Un tornillo de banco lo sujeta firmemente. La velocidad del husillo es realmente un factor importante. La última sección es buena.

Plásticos

El fresado CNC también forma plásticos. El husillo gira muy rápido a 12000 RPM. Emplea brocas para diversos cortes. Progresan en tres dimensiones. Así se crean piezas precisas. El material se fija mediante abrazaderas.

La unidad de control escanea el archivo CAD. Eso guía cada corte. Las virutas se introducen en el vacío. La máquina refrigera la herramienta. Así se evita la fusión. Los plásticos adquieren formas nítidas. La mesa lo mantiene nivelado. Hay que Mecanizado CNC de PEEK para saber más.

El corte se realiza mediante una herramienta conocida como fresas. Hacen bordes limpios. Es rápido y preciso. La pieza de plástico está lista.

Compuestos

Se sabe que los compuestos se fresan con máquinas CNC. El husillo gira a una velocidad de 10.000 RPM. Las brocas de la herramienta cortan capas. También se mueve en los tres ejes. El fluido de trabajo de la máquina la enfría.

Lee el archivo CAD en busca de formas. Así se consiguen diseños complejos. Las virutas se limpian por aire. El tornillo de banco las mantiene en su sitio. La unidad de control funciona según el programa. Cambia de herramienta automáticamente.

Es en esta fase cuando el compuesto adquiere bordes lisos. El proceso es eficaz. Produce componentes resistentes y ligeros. La mesa se mueve con precisión. La última parte se describe en detalle.

Madera

Las tallas realizadas con fresado CNC son lisas en la madera. Qué es el fresado CNC puede explicarle más. El husillo gira a 7.500 rpm. Las brocas son diferentes para cada corte. Se desplazan en dirección X, Y, Z. La madera se comprime firmemente. La unidad de control funciona basándose en archivos CAD. Guía cada corte.

El vacío elimina las virutas. El refrigerante tiene la función de enfriar la herramienta. La máquina trabaja y forma formas precisas. La mesa se mueve con precisión. Esto garantiza la precisión. Las fresas de mango cortan muy bien.

Hacen bordes limpios. La pieza de madera aparece limpia. Así es como el CNC fresa la madera. El proceso es rápido.

Cerámica

La cerámica también puede fresarse mediante cnc. El husillo gira a 6.000 RPM. Utiliza brocas con punta de diamante. Funcionan en tres dimensiones. El refrigerante evita las grietas. En otras palabras, el archivo CAD controla el funcionamiento de la máquina. Así se consiguen formas intrincadas. Las virutas se eliminan con aire.

El tornillo de banco garantiza la colocación firme de la cerámica. La unidad de control cambia de herramienta. Cumple el programa al pie de la letra. La máquina produce bordes afilados. Fabrica piezas fuertes y detalladas.

La mesa se mueve con precisión. La cerámica se mantiene fría. La completan con toques. La pieza es duradera.

¿Cuáles son los tipos de fresadoras CNC?

Fresadoras verticales

El fresado CNC emplea el mecanizado vertical con movimientos X, Y y Z. Estas máquinas están equipadas con un husillo y un motor. El husillo también sube y baja. Se controla mediante código G. Este tipo de máquina tiene una mesa acoplada. La mesa soporta la pieza de trabajo. Emplean fresas para cortar materiales.

Esta configuración permite un corte preciso. La velocidad puede ajustarse hasta 1.200 RPM. Factores como la profundidad y el avance son importantes. Las fresadoras verticales funcionan con precisión. Son ideales para trabajos complejos.

Fresadoras horizontales

El fresado CNC engloba las máquinas horizontales. Disponen de un husillo que se desplaza horizontalmente. El husillo gira a 1500 rpm. Utiliza fresas frontales para cortar materiales. Esta máquina tiene movimiento a lo largo de un eje X.

El eje Y es útil para movimientos o desplazamientos a izquierda y derecha. La pieza se coloca en la mesa. Manejan tareas de gran tamaño. Pueden realizar fácilmente cortes profundos. La velocidad y el avance de la máquina son muy importantes. Las fresadoras horizontales son potentes. Por eso se utilizan a menudo.

Fresadoras multieje

El fresado CNC utiliza varios ejes en sus operaciones. Funcionan con ejes XYZ y A, B. El husillo gira de varias maneras. Esto permite realizar cortes complejos. Dispone de un panel de control. El panel de control determina los valores. Para mayor precisión, utilizan husillos de bolas. Esto ayuda en las actividades de perfeccionamiento.

La velocidad del máquina puede ser de 1800 rpm. La pieza gira sobre una mesa de muñón. Las fresadoras multieje son avanzadas. Consiguen diseños intrincados. Son buenas para trabajos detallados.

Fresadoras de pórtico

El fresado CNC se compone de máquinas de pórtico. Poseen un puente fijo. El husillo se desplaza sobre el pórtico. Esta configuración proporciona estabilidad. Incorpora un potente motor. El motor funciona a 2000 rpm.

Esta máquina trabaja con piezas de gran tamaño. Los ejes X e Y son anchos. Utilizan fresas para el corte y estas fresas son de naturaleza pesada. El panel de control cambia los ajustes. Las fresadoras de pórtico son robustas. Realizan tareas pesadas. La precisión es inigualable.

Fresadoras de bancada

El fresado CNC dispone de máquinas de bancada. Qué es el fresado CNC responde a muchas preguntas. Contienen un husillo fijo. La mesa se desplaza a lo largo del eje X. Proporciona estabilidad. La velocidad del husillo es de 1600 rpm.

Esta máquina utiliza un husillo de bolas para mayor precisión. Es adecuada para materiales pesados. Realizan tareas de gran envergadura. La mesa se utiliza para proporcionar apoyo a la pieza de trabajo. Esto permite cortes precisos. El panel de control especifica los valores. Las fresadoras de bancada son fiables. Realizan operaciones robustas.

¿Cómo seleccionar la fresadora CNC adecuada?

Requisitos de solicitud

En el fresado CNC, se utilizan códigos G para traducir el movimiento del husillo. Se necesita precisión. Trabajan los ejes X, Y y Z. Esta herramienta se utiliza para cortar metales o plásticos. El husillo gira rápido. Cifras como 3000 RPM son significativas. El software CAM ayuda a planificar. El avance y la profundidad pueden marcar la diferencia.

Deben complementar el trabajo que se va a realizar. Así se mantiene la precisión de las piezas. Los controladores FANUC o Siemens regulan el proceso. Son cruciales. Otras fresas son las de punta esférica o plana. La máquina ejecuta las órdenes con precisión.

Compatibilidad de materiales

También hay que tener en cuenta que los distintos materiales requieren entornos diferentes. El fresado CNC se ajusta. Emplean códigos para determinar dónde cortar. Esto es vital. El acero inoxidable requiere velocidades de avance bajas. Mantiene las herramientas seguras. El aluminio permite cortes más rápidos. La dureza de la herramienta importa.

Existen varios tipos de fresas para las maderas. Por tanto, la velocidad del husillo debe ser proporcional al material que se trabaja. El software CAM toma la decisión correcta. Para refrigerar las piezas se utilizan lubricantes. Eso ayuda a evitar daños. En el proceso intervienen factores como el par y la potencia.

Necesidades de precisión

La precisión es muy importante cuando se utiliza el fresado CNC. Qué es el fresado CNC explica más al respecto. Las máquinas utilizan micras para la precisión. La herramienta sigue el código G. Debe ser exacta. Los codificadores lineales ayudan a determinar el movimiento. Esto garantiza tolerancias ajustadas. Los ejes opuestos deben estar en armonía.

Los husillos de bolas y las guías ayudan a ello. Así los errores se mantienen pequeños. La precisión es una característica crucial del regulador, ya que determina los resultados obtenidos. Características como la compensación de holguras ayudan.

Garantizan la trayectoria correcta de la herramienta. Todos ellos deben estar en armonía con la pieza diseñada. Es importante comprobar las medidas.

Volumen de producción

El fresado CNC se adapta a diferentes volúmenes. Se pueden realizar tanto volúmenes de producción pequeños y medianos como producciones a gran escala. Esto afecta a los ajustes. Utilizan los mismos códigos G. Ambos utilizan el mismo código G. Los cambios de herramienta están automatizados. Los cambiadores de palets ayudan a acelerar.

La capacidad de la máquina es importante. Ésta decide cuántas piezas produce. El software CAM optimiza las trayectorias. El tiempo de ciclo es crucial. Indica cuánto tiempo se tarda en fabricar una pieza determinada. La velocidad puede variar en función de los materiales utilizados. Las tareas volumétricas requieren instrumentos potentes.

Limitaciones presupuestarias

Los costes del fresado CNC varían. El precio inicial de la máquina es importante. Esto incluye controladores y husillos. Cada modelo tiene su propio rango de precios. Los costes de mantenimiento son continuos. Elementos como las herramientas y los refrigerantes forman parte del coste total. Hay que tenerlos en cuenta. La eficacia ahorra dinero. El software CAM ayuda. Reduce los residuos.

La reducción de la velocidad de corte y de los avances también conlleva un aumento de los costes. Este equilibrio es clave. Las actualizaciones pueden resultar costosas. Seleccionar la máquina adecuada resultará rentable a largo plazo.

Fresado CNC de prototipos

¿Cuáles son las ventajas del fresado CNC?

Alta precisión

Además, el fresado CNC tiene la ventaja de que permite crear piezas muy precisas. Qué es el fresado CNC es bueno saberlo. Esta máquina tiene movimientos controlados por código G. Puede cortar hasta un grosor de 0,001 pulgadas. ¡Eso es superpequeño! El husillo puede girar hasta 30000 RPM.

Fresas y taladros son algunos de los equipos utilizados para dar la forma adecuada a las piezas. La mesa soporta las piezas para que permanezcan estables. El refrigerante la mantiene fría. Esto evita que se sobrecaliente.

Es útil para crear componentes pequeños como engranajes y pernos. Se adaptan perfectamente entre sí. El fresado CNC es estupendo para realizar trabajos precisos.

Repetibilidad

La repetibilidad de los trabajos de fresado CNC es precisa. Esto significa que produce piezas constantemente. Esta máquina emplea coordenadas en su movimiento. Normalmente sigue siempre la misma secuencia. Emplea los ejes X, Y y Z. El husillo se ajusta a un número específico de revoluciones por minuto.

Las herramientas de corte, como las fresas frontales y los machos, cortan piezas. Lo mantienen todo igual. La mesa sostiene cada pieza en su posición. Esto garantiza que no se muevan. La consistencia es importante para los pedidos de grandes cantidades. Para ello, el fresado CNC es lo mejor.

Eficacia

El fresado CNC produce piezas con rapidez y precisión. Qué es el fresado CNC le ayuda a entender cómo. Esta máquina parte de archivos CAD. Utiliza herramientas de corte de alta velocidad, como fresas de bolas y escariadores. Dispone de ajuste de avances y velocidades. El husillo puede funcionar 24/7. Mantiene el trabajo en frío con la ayuda de refrigerante.

La mesa se mueve rápidamente. Eso ahorra mucho tiempo. Todas estas piezas se hacen más rápido. Esto puede ayudar a hacer muchas piezas en poco tiempo. La eficiencia es muy importante. Se hacen muchas cosas rápidamente. El fresado CNC es genial.

Flexibilidad

El fresado CNC tiene la capacidad de pasar de una tarea a otra con facilidad. Puede fabricar muchos tipos de formas y tamaños. Esta máquina escanea diseños CAD/CAM. El husillo tiene accesorios que incluyen fresas volantes y cabezales de mandrinar. Esto demuestra que la mesa puede adaptarse a diferentes piezas.

Esto ayuda a cambiar de trabajo rápidamente. Emplea diversos materiales como metal, plástico e incluso madera. Todos ellos se cortan limpiamente. El software modifica las trayectorias de las herramientas. La flexibilidad es la capacidad de realizar cosas nuevas. El fresado CNC realiza muchas tareas. ¡Es súper práctico!

Reducción de los costes laborales

Los costes de trabajo se reducen con el fresado CNC. En Qué es el fresado CNC encontrará más información. Esta máquina funciona en gran medida de forma autónoma. Funciona mediante código NC. Muchas herramientas son manejadas por el husillo como fresas de chaflán y brocas de ranura. La mesa se mueve sin ayuda. Esto significa menos trabajadores.

Sigue trabajando muchas horas. Los sistemas de refrigeración hacen que funcione bien. Son rentables y ahorran tiempo. Esta máquina realiza muchas tareas. Menos costes de mano de obra siempre es bueno. El fresado CNC reduce costes y tiempo.

Conclusión

Conocer qué es el fresado CNC demuestra su precisión. Emplea códigos G, husillos y velocidades de avance. Para más detalles, visite MOLDES DE PLÁSTICO. El fresado CNC permite crear componentes precisos. Descubra cómo las máquinas CNC pueden trabajar para usted.

 

mejor precio de piezas de ptfe mecanizadas por cnc

La investigación y el desarrollo en los campos de la química de polímeros y la ciencia de materiales fueron importantes a mediados del siglo XX. Como resultado de esta investigación y desarrollo se crearon los plásticos y polímeros. Estos materiales tenían la capacidad de soportar temperaturas más altas. Inicialmente se crearon el sulfuro de polifenileno y el politetrafluoroetileno, que demostraron hacer frente y soportar temperaturas más altas que los plásticos tradicionales. En la década de los 70, la industria aeroespacial planteó una importante demanda y exigencia de polímeros o plásticos de alta temperatura, y los esfuerzos realizados para obtener materiales ligeros con excelentes características mecánicas y térmicas dieron lugar a la creación de polímeros como numerosos tipos de poliamidas y polieteretercetona.

En última instancia, las piezas metálicas de los motores de las aeronaves y sus componentes estructurales se sustituyeron por estos plásticos ligeros y resistentes a altas temperaturas. Los plásticos convencionales tienden a reblandecerse a altas temperaturas y empiezan a degradarse a esas elevadas temperaturas. Por el contrario, los plásticos de alta temperatura mantienen intactas sus propiedades a temperaturas elevadas y se consideran adecuados para su uso en industrias en las que existen condiciones de funcionamiento extremas. Estas propiedades incluyen la resistencia química, la estabilidad dimensional y las propiedades mecánicas que son vitales para el rendimiento de los plásticos de alta temperatura. Estos plásticos de alta temperatura, diseñados para soportar altas temperaturas en entornos extremos, también se denominan termoplásticos de ingeniería o termoplásticos de alto rendimiento.

Material plástico de alta temperatura

 

Definición del material plástico para altas temperaturas

Material plástico de alta temperatura es el material especialmente diseñado para funcionar a altas temperaturas y soportar estas temperaturas elevadas. La característica básica más importante es que los plásticos de alta temperatura mantienen su integridad estructural y sus propiedades mecánicas a altas temperaturas. Estos plásticos de ingeniería de alto rendimiento mantienen su forma original y no se deforman mientras funcionan a temperaturas elevadas.

Dependiendo de la categoría de los plásticos, mantienen sus características entre los rangos de temperatura de 150°C a más de 300°C. Estos plásticos de alta temperatura encuentran su utilización en aplicaciones de alta temperatura donde los plásticos normales se degradarían y deformarían y no podrían soportar esa alta temperatura. Es pertinente mencionar que los metales soportan un gran peso y también son susceptibles a la corrosión. Teniendo esto en cuenta, los materiales plásticos de alta temperatura sustituyen a las harinas en este tipo de aplicaciones, ya que son ligeros y resistentes a la corrosión.

Polímeros de alta temperatura y plásticos de alta temperatura (Diferenciación)

La variación en la composición y la estructura diferencia a los plásticos de los polímeros. Los polímeros de alta temperatura constituyen una amplia categoría, mientras que los plásticos de alta temperatura son un subconjunto de esta categoría más amplia. Los polímeros de alta temperatura se componen de termoestables y termoplásticos. Para sintetizar estos polímeros se aplican métodos de polimerización avanzados. La mayoría de las veces se utilizan refuerzos o aditivos específicos para aumentar su rendimiento frente a las altas temperaturas.

Sin embargo, los plásticos de alta temperatura sólo están compuestos por termoplásticos. Estos plásticos están diseñados para soportar temperaturas elevadas sin deformarse. Estos plásticos ofrecen muy poca o ninguna degradación a altas temperaturas. Estos plásticos están específicamente diseñados para mantener su resistencia química, propiedades mecánicas y estabilidad dimensional a altas temperaturas.

¿Cuáles son los materiales de los plásticos de alta temperatura (características y aplicaciones)?

Los siguientes son los materiales que entran en la categoría de plásticos de alta temperatura.

  1. Politetrafluoroetileno (PTFE)

Este material, también denominado PTFE, es un excelente aislante eléctrico y se utiliza mucho en aplicaciones que requieren aislamiento eléctrico. Este material también se utiliza para revestimientos antiadherentes, especialmente en utensilios de cocina y en juntas y cojinetes. Esta utilización se basa en algunas propiedades destacadas de este material, como se indica a continuación.

  • Estabilidad a altas temperaturas
  • Bajo coeficiente de fricción
  • Buena resistencia química
  1. Sulfuro de polifenileno (PPS)

Este material PPS es un termoplástico que tiene estructura semicristalina y presenta las siguientes características importantes.

  • Ignifugación (inherente)
  • Resistencia a altas temperaturas
  • Resistencia química
  • Estabilidad dimensional

Estas características hacen que este material sea adecuado para aplicaciones industriales. Este material también se utiliza en el sector eléctrico y electrónico para fabricar carcasas y conectores. Además, en la industria del automóvil, este material se utiliza para fabricar componentes bajo el capó. Ir a Moldeo por inyección de PPS para saber más sobre este material.

termoplástico moldeado por inyección

  1. Polímero de cristal líquido (LCP)

Este material, también denominado LCP, tiene aplicaciones en los siguientes ámbitos.

  • Sector de las telecomunicaciones
  • Industria electrónica (fabricación de interruptores y conectores)
  • Industria del automóvil (producción de componentes bajo el capó)

Este material posee las siguientes propiedades significativas que permiten su utilización en las aplicaciones mencionadas.

  • Excelente resistencia química
  • Alta resistencia mecánica
  • Buena estabilidad dimensional
  • Excelente rigidez
  1. Polieteretercetona (PEEK)

Este material también es termoplástico con estructura semicristalina y también se denomina PEEK. Este material presenta las siguientes características.

  • Elevada relación resistencia/peso
  • Buenas propiedades mecánicas
  • Excelente resistencia química
  • Estabilidad a temperaturas elevadas de hasta 250°C

Teniendo en cuenta las propiedades mencionadas anteriormente del PEEK, se utiliza ampliamente en las siguientes aplicaciones para la fabricación de componentes que exigen resistencia a condiciones ambientales extremas y una buena resistencia mecánica. Ir a moldeo por inyección de plásticos peek para saber más.

  • Industria de semiconductores
  • Sector del automóvil
  • Industria aeroespacial
  • Sector médico
  1. Polieterimida (PEI)

Este material, también denominado PEI, presenta las siguientes propiedades importantes.

  • Resistencia a las llamas
  • Buena resistencia mecánica
  • Alta resistencia térmica
  • Excelente estabilidad dimensional
  • Buenas propiedades eléctricas

Las principales aplicaciones de este material abarcan los siguientes sectores.

  • Sector médico (fabricación de instrumental quirúrgico esterilizable)
  • Industria del automóvil
  • Industria electrónica
  • Sector aeroespacial
  1. Poliimidas (PI)

El material Ployimides, también denominado PI, presenta las siguientes características.

  • Buenas propiedades mecánicas
  • Excelente estabilidad térmica hasta 400°C
  • Buena resistencia química
  • Baja dilatación térmica

Este material se utiliza ampliamente en la industria electrónica, el sector aeroespacial y la industria del automóvil para las siguientes aplicaciones.

  • Aislamiento eléctrico
  • Escudos térmicos
  • Piezas y recambios de motor
  • Circuitos impresos
  1.  Fluoropolímeros (FPE)

Los materiales plásticos de alta temperatura que entran en esta categoría más amplia son los siguientes.

  • Etileno-propileno fluorado
  • Politetrafluoroetileno
  • Perfluoroalcoxi

Estos polímeros suelen presentar ciertas cualidades que se describen a continuación.

  • Estabilidad a temperaturas elevadas
  • Excelente resistencia química (contra ácidos, bases y muchos disolventes)
  • Bajo coeficiente de fricción

Estos materiales se utilizan principalmente en las siguientes aplicaciones.

  • Recubrimientos de alambre
  • Procesado de semiconductores
  • Tubos
  • Sellos
  • Revestimientos
  • Equipos de procesamiento químico

  8.Polifenilsulfona (PPSU)

El PPSU es una pieza de plástico termoplástico de ingeniería de alta temperatura que se descubrió en la década de 1960. Su densidad es de 1,24 g/cm2, la absorción de agua es de 0,22%, el índice de contracción es de 1,007 (0,7%), la temperatura de fusión es de 190 °C, la temperatura de distorsión por calor es de 1,82 MPa a 174 °C, y la temperatura de uso a largo plazo oscila entre -100 °C y +150 °C. Se trata de uno de los materiales plásticos de mayor calidad.

Proceso sencillo de moldeo de material plástico PPSU

Presecado: El PPSU necesita ser presecado antes de ser procesado para eliminar la humedad del material y prevenir reacciones de hidrólisis a altas temperaturas. La temperatura de secado es de 90℃-110℃, al menos 3-4 horas de tiempo de secado.

Precalentamiento: El PPSU debe precalentarse antes del moldeo por inyección para mejorar la fluidez del material. La temperatura de precalentamiento suele oscilar entre 80 y 120 °C.

Inyección: inyectar PPSU en el molde. La presión y la velocidad de inyección deben determinarse en función del tipo y el grosor de la pared del molde de inyección.

Enfriamiento: Esto es más o menos lo mismo que otras piezas de moldeo por inyección, pero el PPSU necesita una temperatura de moldeo más alta que el material ABS o PC, por lo que normalmente el tiempo de enfriamiento será un poco más largo, pero esto depende del espesor de la pared de la pieza de moldeo.

Expulsión: Una vez que el Moldeo por inyección de PPSU Las piezas se han enfriado completamente en la cavidad del molde, éste se abre y el sistema eyector expulsa la pieza moldeada fuera del molde.

Post-procesado: algunas piezas pueden necesitar algún post-fabricado, como mecanizado, torneado CNC, limpieza, etc., dependiendo de los requisitos del cliente.

Aplicación de piezas de moldeo PPUS,

El PPUS es muy caro y se utiliza normalmente en electrodomésticos, electrónica, industrias médicas, biberones, instrumentos y departamentos aeroespaciales para piezas resistentes al calor, a la corrosión, de alta resistencia y piezas aislantes, películas industriales, etc.

A continuación se presentan algunos de los materiales de alta temperatura para su referencia, si necesita piezas de moldeo de plástico de alta temperatura, le invitamos a contactar con nosotros.

Característica Pruebas ASTM PTFE PFA FEP ETFE PCTFE PVDF PEEK PPSU PPS
Punto de fusión (Tem:C aproximada) 327 308 270 260 211 175 343 250 278
Temperatura máxima de uso continuo (20000 horas,Valor teórico:℃ 260 260 200 150 120 150 260 180 240
Conductividad térmica C177(( W/cm-k).℃/cm) 0.25 0.25 0.25 0.24 0.21 0.13 0.66 0.45 0.5
Dureza (shore) Durómetro Shore D D50-D65 D60 D55 D70-D75 D80 D75-D85 D85 D85-95 D87-95
Resistencia a la tracción (Mpa) D638 25-40 28-35 20-25 40-50 32-40 40-58 98 – 100 94-100 >150
Resistencia a la compresión (Mpa) D695/1% Distorsión,25°C 5-6 5-6 5-6 11 9-12 13-14 25-35 95 27-134
Alargamiento (%) D638 250-450 300-400 270-330 400-450 90-250 300-450 40-50 60-120 200
Resistencia al impacto (J/m) D256 160-170 no se rompe no se rompe no se rompe 135-145 1105 40-50 690 800
Proporción D792 2.13-2.22 2.12-2.27 2.12-2.27 1.70-1.86 2.10-2.14 1.76-1.78 1.26 – 1.32 1.32-1.5 1.32-1.5
Índice de contracción (Valor teórico) 2%-5% 4% 3%-6% 3%-4% 1.5%-2% 1.40% 0.50% 0.50% 0.50%
Constante dieléctrica D150/106HZ 2.1 2.1 2.1 2.6 2.4 6.43 3.2 3.94 3.5
Resistencia a la ruptura eléctrica (MV/V) D149/tiempo de disparo,3,2mm 19 20 20-24 16 20-24 10 25 6.3 17
Resistencia a la intemperie excelente excelente excelente excelente excelente excelente excelente excelente excelente
Resistencia a los productos químicos excelente excelente excelente excelente excelente excelente excelente excelente excelente
Ignífugo, retardante de llama (%) Concentración límite del índice de oxígeno >95 >95 >95 >31 >95 >43 >95 >95 >95

¿Cuáles son los métodos de procesamiento de plásticos de alta temperatura?

Para procesar plásticos de alta temperatura se utilizan técnicas especiales. Además, durante el procesado se garantiza que las características de los plásticos de alta temperatura, incluidas la resistencia mecánica y la resistencia al calor, permanezcan intactas durante toda la operación de fabricación.

Los métodos de transformación más comunes y utilizados para los plásticos de alta temperatura son los siguientes.

  1. Moldeo por compresión

En este proceso se prepara una cavidad de molde abierta. A continuación, se calienta la cavidad del molde y se coloca en su interior una cantidad calculada de plástico. Después se cierra el molde y se aplica la presión adecuada al material. La aplicación de esta presión comprime el material y éste se transforma en la forma requerida. Las piezas de gran tamaño y geometría compleja se moldean con este método. Estas piezas son difíciles de moldear mediante otros procesos de moldeo. Los materiales que se procesan mediante el método de moldeo por compresión incluyen polieteretercetona, poliimidas y plásticos termoestables de alta temperatura. Es necesario controlar los siguientes parámetros para obtener un producto final uniforme y sin defectos.

  • Temperatura
  • Presión
  • Tiempo de moldeo
  1. Moldeo por inyección

En este método de procesamiento, primero se prepara una cavidad de molde con la forma deseada. A continuación, el material plástico fundido se inyecta en la cavidad del molde. Esta inyección se realiza a alta temperatura y presión. Los plásticos de alta temperatura se procesan normalmente mediante moldeo por inyección. Este método de procesamiento es viable para artículos de gran volumen y formas intrincadas. Los materiales que se procesan mediante moldeo por inyección son fluoropolímeros, sulfuro de polifenileno, polieteretercetona y polieterimida. Los parámetros que deben controlarse para evitar el alabeo y conseguir estabilidad dimensional son los siguientes:

  • Tasas de enfriamiento
  • Temperatura
  • Resistencia del material del molde a los entornos corrosivos
  • Resistencia del material del molde a las altas temperaturas
  1. Extrusión

Este método utiliza el proceso de extrusión para fabricar el producto o artículo deseado. En esta técnica de procesamiento se utiliza una matriz permanente con la forma deseada. El material plástico fundido se introduce en la matriz mediante una fuerza de compresión. Como resultado, se obtiene un producto de sección transversal uniforme con un perfil continuo. Para evitar la degradación térmica, es fundamental controlar la temperatura de extrusión.

En el procesamiento por extrusión de plásticos a alta temperatura, la calidad del producto extruido y la fluidez del material varían de un material a otro. Por ello, la geometría de la matriz y el diseño de los tornillos se ajustan para conseguir la calidad deseada. Los plásticos de alta temperatura más comunes que suelen procesarse mediante el método de extrusión son los compuestos termoplásticos, los fluoropolímeros, el sulfuro de polifenileno y la polieteretercetona. Los siguientes productos se fabrican habitualmente mediante este método de procesamiento.

  • Tubos
  • Hojas
  • Varillas
  • Perfiles de plásticos de alta temperatura
  1.  Mecanizado

Esta técnica de procesamiento implica la utilización de varias máquinas y herramientas para dar forma a los plásticos de alta temperatura. En este método, las máquinas más utilizadas son las máquinas CNC, las fresadoras y los tornos. Este tipo de procesamiento se aplica a los productos o artículos que tienen geometrías complicadas y son de bajo volumen. Este método exige herramientas especiales y técnicas especializadas debido a la resistencia y dureza del material. Consulte Mecanizado CNC de PEEK para saber más.

Sin embargo, esta técnica permite mecanizar todo tipo de plásticos a alta temperatura. Durante el proceso de mecanizado de plásticos de alta temperatura se genera una cantidad considerable de calor. Este calor es crucial para desestabilizar la precisión dimensional del artículo y también propagar la degradación del material. Para eliminar los efectos adversos de este calor se lleva a cabo una lubricación durante el proceso de mecanizado.

  1. Fabricación aditiva

Este método de transformación es muy singular en comparación con otros métodos de transformación. En esta técnica se utilizan plásticos a alta temperatura en forma de filamentos o polvos. Este polvo se utiliza para producir las piezas capa por capa. Esto se lleva a cabo adoptando técnicas de fabricación aditiva. Principalmente existen dos técnicas de fabricación aditiva que son las siguientes.

  • Modelado por deposición fundida
  • Sinterizado selectivo por láser

Este proceso es viable para producir prototipos. Sin embargo, también se fabrican piezas con geometrías complejas. Este método de procesamiento ofrece un desperdicio mínimo del material. Existen numerosos plásticos de alta temperatura que son compatibles con el método de fabricación aditiva. Entre estos materiales se encuentran la polieteretercetona y la polieterimida. Este método requiere un control muy preciso de los parámetros del proceso para conseguir la precisión dimensional y las propiedades mecánicas exigidas. Además, este método de procesamiento requiere equipos especiales que puedan manipular materiales plásticos de alta temperatura.

Plásticos de alta temperatura

Conclusión

La ciencia de los materiales está tocando un nuevo horizonte y mostrando avances gracias a los plásticos de alta temperatura. Estos materiales ofrecen propiedades únicas y especiales, como resistencia mecánica, estabilidad a temperaturas elevadas y resistencia a productos químicos como ácidos, bases y disolventes. Los materiales plásticos de alta temperatura han permitido la fabricación de repuestos y productos de alto rendimiento, resistentes, ligeros y duraderos. En consecuencia, todos los sectores e industrias importantes han experimentado una revolución, como la electrónica, la automoción, la medicina y la industria aeroespacial.

Los materiales plásticos convencionales no pueden soportar altas temperaturas y experimentan degradación. Sin embargo, los plásticos de alta temperatura son muy adecuados para esas aplicaciones porque tienen la destacada propiedad de hacer frente a temperaturas elevadas. Además, los plásticos de alta temperatura son resistentes a la corrosión y a las tensiones mecánicas. Estos materiales prolongan la vida útil de los productos y repuestos gracias a sus características únicas, como la resistencia a la fatiga, el mantenimiento de la estabilidad dimensional y el aislamiento eléctrico en condiciones de funcionamiento extremas.

Alta temperatura plásticos son cada día más importantes porque el sector industrial exige un alto rendimiento de los componentes y repuestos. La investigación y el desarrollo avanzados en los campos de la ciencia de los materiales y los métodos de procesamiento están demostrando que estos materiales pueden utilizarse para satisfacer requisitos más exigentes. Esto se traducirá en una mayor eficiencia, sostenibilidad y seguridad en numerosos sectores.

Instalación de moldeo por inyección de plásticos

El mercado de empresas de moldeo por inyección de plástico en China ha crecido y se ha expandido debido al desarrollo de la fabricación de prototipos 3D. El tamaño del mercado fue de 36 mil millones de yuanes en 2018 y aumentó a 45 mil millones de yuanes en 2023, con una tasa de crecimiento anual compuesto (CAGR) de 6%. Ha aumentado hasta 9% en los últimos cinco años. Se prevé que este crecimiento continúe y que el mercado aumente hasta los 58.000 millones de yuanes en 2030, con una tasa de crecimiento anual compuesto de aproximadamente 5%.

La Asociación de la Industria del Plástico de China ha clasificado las 10 principales empresas de moldeo por inyección de plástico de China en 2020, en función de sus principales ingresos comerciales.

Explore las 10 principales empresas chinas de moldeo por inyección de plástico de renombre.

Esta es la lista de las 10 principales empresas chinas de moldeo por inyección de plásticos reconocidas por ofrecer rigurosos estándares de calidad a sus valiosos clientes de todo el mundo

1. Dongguan Sincere Tech Co., Ltd.

Empresa china de moldeo por inyección de plásticos

Año de creación: 2015

Ubicación: La ciudad de Dongguan está en la provincia de Guangdong.

Tipo de industria: Los cuatro procesos más utilizados en la producción de piezas de automoción son el moldeo por inyección de plástico, la fundición a presión, el mecanizado y el acabado de superficies.

Dongguan Sincere Tech Co., Ltd. lleva más de 19 años en el mercado y está especializada en moldes y piezas asequibles y de alta calidad. La empresa se encuentra entre las empresas de moldeo por inyección de plástico en China. Cubren en gran medida las necesidades de diversas industrias, como la aeroespacial, la médica y la de productos de consumo, prestando rigurosos servicios de piezas de calidad estándar.

Características principales:

La satisfacción del cliente se garantiza mediante la firma de un acuerdo de confidencialidad y la prestación de servicios posventa de calidad.

Transparencia en los servicios: Los clientes reciben información exhaustiva sobre las materias primas utilizadas y los resultados de las pruebas realizadas a los productos, lo que genera confianza y franqueza. También ofrecen precios asequibles al alcance del bolsillo de cualquier cliente.

Productos y servicios:

  • Electrónica, electrodomésticos, almacenamiento, herramientas de belleza para el cabello, aparatos médicos, etc.
  • Plantillas de muebles, plantillas de productos para bebés y plantillas de piezas de automóviles.
  • Moldeo por inyección de plástico, impresión 3D y moldeo por inserción.
  • Otros servicios ofrecidos son mecanizado CNC, sobremoldeo, fundición a presión de aluminio, diseño de productos de plástico y fabricación de prototipos.
Empresas de moldeo por inyección de plásticos

Dongguan Sincere Tech Co., Ltd. es una reputada fabricante de moldes en China. Se especializa en el moldeo de plásticos y se dedica a proporcionar moldes de alta calidad y excelentes servicios a sus valiosos clientes.

 

2. Seasky Medical

Tipo de negocio: Fabricante de soluciones de moldeo por inyección de plásticos

Sede central: La ciudad de Shenzhen se encuentra en la provincia de Guangdong, en la República Popular China.

Año de fundación: 1999

Certificaciones: ISO 10993, ISO 13485:2016 y sala blanca ISO 8

Seasky Medical es un destacado fabricante de moldes de plástico en China, y está especializado en la industria médica. Ofrecen soluciones en diseño de moldes, fabricación, selección de materiales, moldeo por inyección y servicios de desarrollo de productos.

Con más de una década en producción y 11 años más de experiencia de su empresa matriz, Seasky Medical es una de las empresas más raras en el campo de las empresas de moldeo por inyección médica, lo que la distingue por proporcionar prototipos de uso médico de estricta calidad a la industria sanitaria. La empresa cuenta con una planta de producción con sala blanca ISO 8 y utiliza 10 máquinas y equipos de moldeo por inyección de última generación para producir moldes de inyección de plástico de alta calidad. Seasky Medical se dedica a proporcionar estándares de calidad a sus clientes, lo que la ha convertido en una de las empresas líderes en moldeo por inyección para uso médico.

3. JMT Automotive Mold Co., Ltd.

Tipo de negocio: Empresa de fabricación de moldes

Sede central: Taizhou, Zhejiang, China

Año de fundación: 2005

Certificaciones: ISO9001/TS16949

JMT Automotive Mold Co., Ltd. es un jefe profesional empresa de moldeo por inyección de plástico en China, situada en Huangyan, provincia de Zhejiang. Desde su creación en 2005, la empresa ha proporcionado a sus clientes productos de calidad estándar y servicios integrales. Se centran principalmente en moldes de automoción, moldes SMC, moldes de electrodomésticos y moldes de productos para el hogar.

Su planta ocupa 23.000 metros cuadrados y cuenta con modernos equipos: centros de fresado de alta velocidad procedentes de Taiwán, más de 10 máquinas de moldeo por inyección haitianas, centros de mecanizado de alta velocidad multieje como de cinco ejes, detectores de coordenadas, máquinas de electroerosión de alta precisión, detectores de dureza de materiales y 50 unidades de procesamiento CNC.

4. Dongguan Runsheng Plastic Hardware Co.

Año de fundación: 2007

Localización de la industria: La provincia de Guangdong es una de las provincias de la República Popular China.

Industria: Fabricación

Dongguan Runsheng Plastic Hardware Company es una de las empresas líderes en la industria china de moldeo por inyección de plástico que se centra en el diseño y montaje de moldes. Fundada en 2007, la empresa está dirigida por directivos profesionales y personal técnico comprometidos con la creación de productos diversificados de alta calidad.

Algunos de los principales servicios que ofrecen son mecanizado rápido de prototiposmoldeo por inyección, utillaje, fundición a presión y mecanizado CNC. Dongguan Runsheng cuenta con una amplia cartera de productos, lo que permite a los clientes seleccionar soluciones que satisfagan sus necesidades.

5. Shenzhen Silver Basis Technology Co., Ltd.

Tipo de negocio: Fabricación de moldes industriales | Fabricación de piezas de vehículos de motor

Ubicación: Shenzhen, provincia de Guangdong, China

Año de fundación: 1993

Certificaciones: ISO9001:2008, ISO14001:2004

Shenzhen Silver Basis Technology Co., Ltd. es una de las principales empresas profesionales de moldeo por inyección de plástico de China. Se centran principalmente en moldes de precisión y ofrecen servicios de utillaje y moldeo para piezas estructurales y moldes de inyección de gran precisión. Ha trabajado con empresas mundiales como Peugeot automóviles y ZTE teléfonos móviles.

Silver Basis Technology presta servicios especializados para el sector del automóvil. Proporciona a los fabricantes de automóviles moldes para grandes piezas interiores y exteriores de automóviles, piezas funcionales y sistemas de seguridad para automóviles.

Otros productos

También ofrecen estampación metálica y fundición a presión, así como piezas de interior y exterior de automóviles.

Servicios de ensayo de productos, moldes de calidad rigurosa y piezas fabricadas.

6. Rilong Mold Co., Ltd.

Año de fundación: 1990

Ubicación: Shenzhen, China

Tipo de industria: Fabricación

Certificaciones: ISO 9001:2015, ISO 14001:2015, IATF 16949:2016 y muchas otras.

Rilong Mold Co. es una empresa china de fabricación de moldes con el prestigio de suministrar productos de inyección de plástico de alta precisión. Cuentan con una sólida plantilla de 300 empleados, especializados en ingeniería, producción y pruebas. Rilong ofrece una gama completa de servicios internos de fabricación que pueden personalizarse para satisfacer los requisitos específicos del cliente. Su cartera incluye piezas de automoción, productos ópticos, cámaras de seguridad y productos electrónicos.

7. Molde HT

Año de fundación: 2006

Ubicación: Shenzhen, China

Tipo de industria: Fabricación

Certificaciones: ISO 9001:2015, ISO 14001:2015, IATF 16949:2016

HT Mould es una empresa profesional de moldeo por inyección de plástico en China fundada en 2006. Se dedica al diseño de moldes de plástico, moldes de inyección y piezas moldeadas para diferentes sectores de la economía. HT Mold cuenta con 450 empleados profesionales y tiene oficinas en diferentes regiones del mundo, como América, Rusia y Europa.

8. Richfield Plastics Ltd.

Capacidades empresariales: Fabricante, proveedor, exportador, marca blanca

Ubicación: Dongguan

Mercados principales: América, Europa y Oriente Medio.

Año de creación: 2001

Certificados: Certificación ISO

Richfields Plastics Ltd. se fundó en 2001 como empresa de moldeo por inyección de plásticos. Con los años, ha crecido hasta ofrecer a sus clientes soluciones completas para sus necesidades de fabricación, incluida la fabricación de moldes.

Richfield Plastics es un fabricante de moldes y moldeadores por inyección con sede en Dongguan (China). Cuenta con una fábrica de 18.000 metros cuadrados y 250 empleados. Además, ofrece una gran variedad de servicios de acabado posteriores al proceso, como pintura en spray, impresión, montaje, embalaje y etiquetado.

A diferencia de algunos competidores, Richfields Plastics ofrece moldes de inyección y productos de plástico a varias industrias, entre ellas las de automoción, deportes, productos de consumo, caucho, juguetes, productos para el hogar y la cocina y herramientas.

9. TK Mold (Holdings) Ltd.

Tipo de negocio: Proveedor de soluciones de moldeo de plástico

Sede central: Shenzhen es una ciudad de la provincia china de Guangdong.

Año de fundación: 1983

Certificaciones: ISO 9001:2015, ISO 13485:2016, ISO 14001:2015, OHSAS 18001:2007

TK Mold Holdings Limited es una marca líder que se ha ganado la reputación de ofrecer soluciones únicas de moldes de plástico para los sectores médico y automovilístico. Fundada en 1983 en Hong Kong, TK Mold lleva más de 40 años en el sector y es un fabricante profesional de moldes y piezas de plástico para aparatos médicos, dispositivos domésticos inteligentes, teléfonos móviles y electrónica de precisión. TK Mold es una marca muy conocida en China y Asia, y ha logrado un éxito notable; es la primera empresa en ingresos entre los proveedores chinos de nivel MT3, según IPSOS, una empresa independiente de investigación de marketing.

En la actualidad, TK Mold cuenta con cinco líneas de producción: cuatro en Shenzhen y una en Alemania. La empresa cuenta con una amplia zona de producción de más de 200.000 metros cuadrados. Además, TK Mold Holding es una empresa de renombre que abarca diversos sectores, como las telecomunicaciones, la automoción, los electrodomésticos, la sanidad y los dispositivos móviles digitales.

10. Eco Molding Co., Ltd

Tipo de negocio: Fabricante de moldes de inyección de plástico a medida

Sede central: Ciudad de Songgang, Shenzhen, China

Año de fundación: 2008

Certificaciones: ISO 9001-2008

Empleados: 100 empleados

Eco Molding Limited es una empresa china especializada en el negocio del moldeo por inyección de plásticos. Ha estado en funcionamiento durante más de una década desde su creación en 2008. Eco Molding se ha consolidado como una empresa líder de moldeo de plásticos a medida que presta sus servicios a los mercados norteamericano y europeo con la ayuda de empleados muy trabajadores, equipos de calidad y una gestión experimentada.

Centrándose en diferentes tipos de moldes de plástico, Eco Molding ofrece soluciones de moldeo por inyección para electrónica, productos OEM industriales en general, electrodomésticos y automoción. La empresa también mantiene altos niveles de transparencia al proporcionar a sus clientes precios directos de fábrica, lo que ayuda a generar confianza y credibilidad.

Eco Molding Co. Ltd. tiene más de, ocupa una superficie de más de 2.000 metros cuadrados, y tiene activos de capital de más de 8 millones de RMB. Con estos recursos, la empresa tiene capacidad para producir entre 40 y 50 moldes de inyección de plástico al mes.

Empresas de moldeo por inyección de plásticos en China

Resumen

Actualmente, hay muchas empresas de moldeo por inyección de plástico en China que ofrecen sillas de plástico moldeado, juguetes para bebés, electrodomésticos y otros productos de consumo a precios razonables. A la hora de elegir una empresa de moldeo por inyección de plástico con la que trabajar, es importante tener en cuenta aspectos como el coste, la fiabilidad, la durabilidad y la funcionalidad del producto. Todas las empresas mencionadas pueden ayudarle a hacer realidad sus ideas, así que elija la que mejor se adapte a sus necesidades. Si busca soluciones de fabricación personalizadas bajo demanda de las mejores empresas de moldeo por inyección de plástico personalizado o empresas de inyección de moldes de plástico cerca de mí, no vaya a ninguna parte. Póngase en contacto con nosotros para encontrar su solución de fabricación de productos a medida.

Empresa de moldes de inyección

Los 10 principales fabricantes chinos de moldes

El moldeo es un proceso que consiste en dar forma a resinas líquidas o materias primas maleables vertiéndolas en un molde. Los fabricantes de moldes de China tienen un impacto significativo en la producción de numerosos productos moldeados que son indispensables. Sin embargo, seleccionar al fabricante de moldes adecuado no es una tarea fácil, y en cierto modo agitada, porque hay muchas opciones en China. Para facilitar su búsqueda, hemos elaborado una lista de los 10 mejores fabricantes de moldes en China. Por lo tanto, no tendrá que dedicar su tiempo a navegar sin rumbo por la red.

Además, hemos observado una tendencia al alza de la impresión 3D en la India. Sin embargo, todavía no es una gran industria allí, pero está mostrando un signo de crecimiento en breve. Este artículo contiene información sobre los fabricantes de moldes de plástico de China, sus principales productos y mucho más.  

Los 10 principales fabricantes de moldes de China

Exploremos los 10 principales fabricantes de moldes de China.

1. Dongguan Sincere Tech Co., Ltd

Empresa china de moldes

Año de fundación: 2015

Ubicación: Provincia de GuangDong: Ciudad de Dongguan.

Tipo de industria: Moldeo por inyección de plásticos, fundición a presión, mecanizado y acabado de superficies.

Sincere Tech ha existido durante más de 19 años proporcionando los mejores moldes y piezas a precios razonables y estándares de alta calidad. Se han especializado en el moldeo por inyección de plástico que les hace distinguirse para satisfacer diversas necesidades de la industria aeroespacial y médica, a los productos de consumo.

Características principales:

Satisfacción del cliente: Valoran a sus clientes ofreciéndoles acuerdos NDA y excelentes servicios posventa para que la satisfacción de los clientes sea lo más importante.

Transparencia: Sus valiosos clientes obtienen descripciones de las materias primas y resultados de las pruebas de los productos para una mayor confianza en el trato. Además, obtendrá un presupuesto de precio competitivo según sus necesidades dentro de su presupuesto limitado.

Productos y servicios:

  • Moldes para electrónica, electrodomésticos, almacenamiento, herramientas de belleza para el cabello, dispositivos médicos y mucho más.
  • Plantillas de muebles, productos para bebés y piezas de automóvil.
  • Moldeo por inyección de plástico e impresión 3D y moldeo por inserción.
  • Otros servicios incluyen mecanizado CNC, sobremoldeo, fundición a presión de aluminio, diseño de productos de plástico y fabricación de prototipos.

Dongguan Sincere Tech Co. Ltd es uno de los 10 principales fabricantes de moldes en China que proporciona soluciones de calidad de alto estándar en la industria de moldeo de plástico con calidad y satisfacción del cliente.

2. Bluestar Technology Group Co., Ltd.

fabricante de moldes China

Año de fundación: 2003

Ubicación: Guangdong, China

Tipo de industria: Producción de piezas de automoción, investigación y desarrollo, y utillaje.

Bluestar Technology Group Co., Ltd. es una empresa china de moldes de inyección que lleva más de dos décadas en la industria de fabricación de piezas de automóviles. Bluestar cuenta con una gran plantilla de más de 800 empleados y es una empresa nacional y municipal de alta tecnología con certificaciones ISO9001, ISO14001 e IATF16969. La empresa se centra en ofrecer las mejores autopartes y servicios completos de moldeo para la industria automotriz.

Características principales:

Satisfacción del cliente: Bluestar se compromete a proporcionar los mejores productos a los clientes a través de sus sólidos sistemas de I+D y fabricación.

Transparencia: La empresa proporciona información detallada sobre las materias primas y los resultados de las pruebas de los productos para ganarse la confianza de sus clientes. También ofrecen precios competitivos que son flexibles para ajustarse a las necesidades presupuestarias de los clientes.

Productos y servicios:

  • Producción de autopartes: Comprende faros de vehículos, componentes de tapicería interior, productos de moldeo de doble disparo (productos 2K) y sistemas de tratamiento de aire.
  • Centro de I+D: Se dedica al diseño y fabricación de accesorios, piezas y sistemas para automóviles.
  • Servicios de fabricación: Tecnología de mecanizado para el moldeo por inyección de piezas de precisión para automóviles.

Bluestar Technology Group Co., Ltd. es uno de los 10 principales empresas de moldeo por inyección de plástico en China que proporciona soluciones de calidad en la industria de fabricación de piezas de automóviles y se dedica a la calidad, la innovación y la satisfacción del cliente.

3. TEC Mold Holdings Limited

fabricantes de moldes en China

Nombre de la empresa: TEC Mold Holdings Limited.

Año de fundación: 2000

Ubicación: Shenzhen y Dongguan, provincia de Guangdong, China.

Tipo de industria: Utillaje de moldeo por inyección, Moldeo por inyección de plásticos, Operaciones secundarias.

TEC Mold Holdings Limited se fundó en 2000 y es una Empresa con sede en China que ofrece una gama completa de servicios de fabricación. TEC Mold se ha convertido en un proveedor fiable de "servicios integrales de fabricación" con una superficie de fabricación de 50.000㎡ y un equipo de más de 650 empleados. Certificada según las normas ISO 9001:ISO/TS16949:2009, la empresa está reconocida como empresa de alta tecnología en China.

Características principales:

Amplias instalaciones: TEC Mold tiene cuatro fábricas en Shenzhen y Dongguan con cuatro divisiones: Taller de moldes de precisión, Taller de moldes grandes y Moldeo por inyección con operaciones secundarias.

Garantía de calidad: TEC Mold cuenta con equipos independientes de Calidad, Gestión de Proyectos, Diseño, Ingeniería y Fabricación para garantizar la calidad en todos sus procesos.

Presencia en diversos mercados: La empresa presta servicio a diferentes sectores, como automoción, medicina y sanidad, aeroespacial, electrónica, hogar, telecomunicaciones, construcción y seguridad.

Productos y servicios:

  • Utillaje de inyección de plástico: Utillaje de precisión para piezas de automoción, dispositivos médicos, electrodomésticos, piezas de aviones y otros productos.
  • Moldeo por inyección: Servicios de moldeo por inyección de alta calidad para la industria.
  • Operaciones secundarias: Otros servicios como pintura por pulverización, revestimiento UV, montaje, etc.

TEC Mold Holdings Limited es una Empresa china de moldes que se dedica a ofrecer servicios de fabricación de alta calidad, innovación y satisfacción del cliente en diversas industrias.

4. Jabil One

molde de inyección china

Nombre de la empresa: Jabil One

Año de fundación: 1966

Ubicación: Operaciones internacionales con más de 100 centros en más de 20 países.

Tipo de industria: ISoluciones de fabricación de moldes de inyección, ingeniería y gestión de la cadena de suministro.

Jabil One es un proveedor global de soluciones de fabricación fundado en 1966 y actualmente presente en más de 100 ubicaciones en todo el mundo. Jabil One es una empresa que lleva en funcionamiento más de 50 años y cuenta con un equipo de profesionales comprometidos con ofrecer soluciones de ingeniería, fabricación y cadena de suministro a sus clientes.

Características principales:

1. Alcance mundial: Jabil One está presente en todo el mundo con una amplia gama de soluciones escalables y adaptadas a las necesidades de clientes de diversos sectores.

2. Experiencia integral: La empresa integra competencias técnicas, de diseño, conocimiento de la cadena de suministro y gestión global de productos para ofrecer las mejores soluciones a las principales marcas del mundo.

3. Responsabilidad medioambiental: Jabil One se compromete a crear procesos sostenibles respetuosos con el medio ambiente y responsables.

4. Avances y excelencia: Jabil One aspira a que todo sea posible y todo sea mejor en el mundo del futuro.

Productos y servicios

  • Soluciones avanzadas de ensamblaje: La miniaturización de la electrónica y la convergencia de tecnologías complejas.
  • Iniciativas de economía circular: Materiales sostenibles, diseño modular y colaboración de proveedores para productos sostenibles desde el punto de vista medioambiental.
  • Fabricación integral: Ofrecer servicios de fabricación de extremo a extremo para sectores como la automoción, la sanidad o la electrónica de consumo, entre otros.

Jabil One es un proveedor global de soluciones de fabricación por inyección de plástico que trabaja con las empresas más innovadoras del mundo para alcanzar el éxito, impulsar la innovación y marcar la diferencia en la vida de las personas y el planeta.

5. DongGuan Wellmei Industrial Co. , Ltd.

Empresa china de moldes

Año de fundación: 1988

Ubicación: Ciudad de Dongguan, provincia de Guangdong, China.

 Tipo de industria: Inyección de moldes de plástico, fabricación de productos de plástico, tratamiento de superficies, montaje y mucho más.

Wellmei Industrial Co., Ltd. ha sido un fabricante líder de inyección de moldes de plástico durante más de 30 años. Fundada en 1988, nos hemos convertido en un fabricante profesional de moldes de plástico, productos de plástico, tratamiento de superficies, montaje y otros servicios relacionados. Hemos establecido una reputación de calidad y servicio al cliente en el mercado.

Características principales:

  • Compromiso de calidad: Wellmei se compromete a proporcionar productos y servicios de calidad a través de la garantía de calidad y la mejora de la calidad en la producción.
  • Operaciones transparentes: Estamos comprometidos con la transparencia y divulgamos información sobre el origen de las materias primas, las pruebas de los productos y los precios competitivos para fomentar la confianza de los clientes.
  • Diversos productos y servicios: Nuestros productos incluyen una amplia variedad de productos de plástico, como piezas de automóviles, dispositivos médicos, electrodomésticos, dispositivos OA, terminales de comunicación móvil, etc. También ofrecemos fabricación de moldes de plástico, tratamiento de superficies, montaje y otros servicios.

Productos y servicios:

  • Fabricación de moldes de plástico: Especializados en diferentes tipos de moldes como E-mold, 2Kmold, e IML mold.
  • Moldeo de productos plásticos: Moldeo por inyección para automoción, medicina, electrónica de consumo y otras industrias.
  • Impresión y revestimiento de superficies: Tratamientos superficiales: Mejoras estéticas y funcionales de los productos.
  • Montaje: Ofrecer servicios completos de montaje de productos acabados o semiacabados.

DongGuan Wellmei Industrial Co., Ltd. se dedica top 10 fabricantes de moldes de inyección en China a proporcionar las mejores soluciones, calidad y servicios en la industria de inyección de moldes de plástico.

6. Richfields Corporation

Empresa china de moldes

Año de fundación: 2001

Ubicación: Ciudad de Dongguan, provincia de Guangdong.

Industria: Fabricación de moldes de inyección

Premios y certificaciones: ISO/TS 16949/2009, Certificado GMP.

Richfields Corporation es una conocida empresa china de fabricación de moldes que crea moldes de la mejor calidad y a un precio asequible. Emplean tecnología punta y, con más de 30 años de experiencia, su profesionalidad e inventiva son incomparables. La posición estratégica y el enfoque orientado al cliente de estas marcas son las principales razones por las que son seleccionadas por la mayoría de las empresas líderes de todo el mundo.

Richfields exporta a países como Francia, Alemania, EE.UU., Reino Unido y Brasil, entre otros. No se limitan únicamente a la fabricación de moldes de inyección de plástico, también ofrecen una gama de servicios adicionales como moldes de canal caliente y canal frío, sobremoldeados y moldes de caucho, montaje, entre otros. Su experiencia abarca desde el moldeo por inyección de plástico de precisión hasta el moldeo por inyección asistida por gas y la producción de grandes productos de seguridad como ganchos, cubiertas de bordes, topes de puertas, correas y enrolladores de cordones.

 

7. Huizhou Djmolding

Empresa china de moldes

Año de creación: 2010

Ubicación: En la ciudad de Huizhou, provincia de Guangdong, China.

Industria: Fabricante de moldeo por inyección

Premios y certificaciones: Normas ISO 9001:2008

Huizhou Djmolding Co.Ltd es uno de los más profesionales fabricantes de moldes de plástico de China, que es el negocio principal de nuestra empresa. Son famosos por proporcionar los mejores moldes de su clase utilizando máquinas y tecnologías avanzadas de vanguardia que garantizan la alta confiabilidad del cliente.

Servicios y productos ofrecidos:

  • Los servicios de creación rápida de prototipos y el moldeo por inyección de prototipos son los métodos más rentables para finalizar el diseño y dejarlo listo para la producción en serie.
  • Moldeo por inyección para automoción
  • Servicios de mecanizado y fresado CNC de alta precisión.
  • viejo y moribundo.
  • Fabricación de moldes de plástico
  • Herramientas de moldeo por inyección y moldeo por inyección-soplado mediante el uso de tecnologías avanzadas.
  • Moldes para electrodomésticos
  • El diseño y la fabricación de moldes de inyección son algunos de los principales servicios que ofrece nuestra empresa.
  • Moldeo por inyección de plásticos a medida.

8. MOLDE SINO

molde de inyección china

Año de fundación: 1999

Ubicación: El Huangyan Taizhou, provincia de Zhejiang, China.

Industria: Proceso de fabricación de moldes de inyección de plásticos

SINO MOULD es un fabricante de moldes de inyección de plástico de China que goza de reputación mundial y suministra productos en países como el Reino Unido, EE.UU., Francia y España. Afirman asegurar la satisfacción del cliente 100% proporcionando servicios de garantía y garantía, y también mediante la entrega de moldes de calidad a precios bajos y en un corto período de tiempo.

Servicios y productos ofrecidos:

  • Moldes para el hogar y electrodomésticos.
  • Los moldes y los moldes de los envases y de alta precisión son necesarios.
  • Moldes industriales como, por ejemplo, moldes para frigoríficos y goteros.
  • Las matrices para el conector del accesorio de tubería y el contenedor de pared delgada se mecanizarán.
  • Médico y molde de componentes y moldes de pintura.
  • Fabricación de moldes de automóviles, moldes de cajas y moldes de inyección de plástico para aire acondicionado.

9. Sakura Tech

molde de inyección china

Año de fundación: 1995

Ubicación: Shanghai

Tipo de empresa: Fabricación

Productos clave: Moldes de inyección

Sakura Tech, fundada en 1995, se ha convertido en uno de los principales productores de moldes de plástico. Su especialidad abarca procesos como el sobremoldeo, el moldeo rotacional y el moldeo compacto, entre otros. Son populares por proporcionar interiores de alta calidad y duraderos a piezas exteriores de automóviles y aviones. La empresa está dirigida por un equipo de diseñadores e ingenieros de talento conocidos por ser los responsables de productos tan legendarios.

10. TK Group(Holdings) Limited

molde de inyección china

Año de fundación: 1983

Ubicación: Shenzhen, Suzhou, Huizhou, Vietnam y Alemania

Tipo de empresa: Fabricación

Productos clave: Moldes de inyección

TK se fundó en 1983 en Hong Kong. Tras 40 años de desarrollo, el Grupo TK es ahora una conocida empresa de inyección de plástico y fabricación de moldes. TK cotizó con éxito en el mercado principal de la Bolsa de Hong Kong en 2013, código bursátil: 02283. Una empresa independiente de estudios de mercado, IPSOS, informó de que los ingresos del negocio de moldes de plástico de TK ocupaban el primer puesto entre los proveedores de nivel MT3 de China.

TK es un líder molde de plástico y empresa de moldeo por inyección de China, que presta servicio a industrias como la de los electrodomésticos, la automoción y la electrónica, entre otras. La adopción de las últimas tecnologías de fabricación en procesos de automatización ha contribuido en gran medida a su éxito duradero frente a la creciente competencia de los recién llegados al mercado.

Notas finales

El panorama industrial chino es muy ajetreado y es fácil perderse entre las numerosas industrias para encontrar la que mejor se adapte a sus necesidades. Para facilitarle la búsqueda, hemos recopilado la información necesaria sobre los fabricantes de moldes de inyección en China y le indicamos los principales. empresas de fabricación de moldes en la zona.

Plasticmol.net es la elección correcta y sirve como una solución única para satisfacer todas sus necesidades de moldeo, ya que proporciona productos de alta calidad a precios competitivos. Tenemos una política de precios transparente. Descubra nuestra amplia gama de productos y servicios de perspectivas más amplias, que están convenientemente disponibles en el mismo lugar.

Herramienta de moldeo por inyección de plástico

El primer paso en molde diseño para moldeo por inyección es obtener los datos necesarios. Esto implica averiguar cuántas cavidades habrá, elegir el material del molde y recopilar la información pertinente. Esto puede requerir trabajar con especialistas como ingenieros de materiales y fabricantes de herramientas, analistas de costes. Aunque el material de moldeo no suele ser elegido por el diseñador de moldes, para diseñar un molde con éxito es necesario conocer varios factores importantes. Comprobar el consejos de diseño de costillas de piezas de plástico.

Elección de materiales para el diseño de moldes

Comprender las propiedades de los materiales de moldeo es esencial a la hora de diseñar moldes de inyección. Los distintos materiales e incluso grados tienen diferentes tasas de contracción, por lo que es importante confirmarlo antes de empezar a diseñar el molde, ya que si la contracción se ha fijado en el diseño del molde, más adelante no se podrá cambiar a otro material de contracción, porque eso cambiará las dimensiones de la pieza. Algunos plásticos absorben y disipan mejor el calor, lo que afecta al enfriamiento del molde. Esto puede afectar a la ubicación de los canales de refrigeración del molde, y los diseños de la compuerta, el canal y la ventilación están muy influidos por la viscosidad del plástico.

Consideraciones sobre la contracción

Una consideración clave en el diseño de moldes es el índice de contracción, o la fase de contracción que se produce en los polímeros. La cantidad que se contraerá una pieza después de sacarla del molde viene determinada por el factor de contracción que se asigna a cada tipo de plástico. Los plásticos pueden encogerse de forma anisótropa o isótropa. Al igual que los materiales amorfos, los materiales isótropos se contraen uniformemente en todas las direcciones. En cambio, los materiales anisótropos -que suelen ser cristalinos- pueden presentar una mayor contracción a lo largo de la dirección de flujo.

Por ejemplo, para alcanzar el tamaño necesario tras la contracción, un producto de 6 pulgadas con un factor de contracción de 0,010 pulg./pulg. necesita una cavidad de molde de 6,060 pulgadas. Las tres categorías de factores de contracción son las siguientes: bajo, entre 0,000 y 0,005 pulg./pulg.; medio, entre 0,006 y 0,010 pulg./pulg.; y alto, superior a 0,010 pulg./pulg.

Índice de contracción

La aplicación de factores de encogimiento a cada centímetro del producto repercute en todas sus dimensiones. Hay tres categorías de contracción -baja, media y alta- que influyen en las dimensiones de la cavidad del molde. La contracción puede verse afectada por las fluctuaciones de temperatura del molde, así como por las modificaciones del grosor de la pared del producto. Es difícil estimar la contracción; los proveedores de materiales, los fabricantes de moldes y los moldeadores experimentados deben opinar al respecto. si no sabe qué contracción debe utilizar, no se preocupe, sólo tiene que indicarnos el material que prefiere utilizar para su proyecto, y nosotros nos encargaremos del resto.

La tabla siguiente muestra el índice de contracción de los materiales más comunes

Nombre y apellidos de Material Nombre abreviado del material Mín. a Máx. Valores de contracción
Acrilonitrilo butadieno estireno ABS .004 – .008
Acrilonitrilo-butadieno-estireno/policarbonato PC/ABS .004 – .007
Acetal POM .020 – .035
Acrílico PMMA .002 – .010
Acetato de etileno y vinilo ( EVA .010 – .030
Polietileno de alta densidad HDPE .015 – .030
Polietileno de baja densidad LDPE .015 – .035
Poliamida - Relleno de nailon (PA) 30% Fibra de vidrio PA+30GF .005 – .007
Poliamida Nylon (PA) Sin rellenar PA .007 – .025
Tereftalato de polibutileno PBT .008 – .010
Policarbonatoe PC .005 – .007
Acrilonitrilo Acrilato de estireno ASA .004 -. 007
Poliéster .006 – .022
Polieteretercetona PEEK .010 – .020
Polieterimida PEI .005 – .007
Polietileno PE .015 – .035
Polietersulfona PSE .002 – .007
Polifenileno PPO .005 – .007
Sulfuro de polifenileno PPS .002 – .005
Poliftalamida CCE .005 – .007
Polipropileno PP .010 – .030
Poliestireno PS .002 – .008
Polisulfona FUENTE DE ALIMENTACIÓN .006 – .008
Poliuretano PUR .010 – .020
Cloruro de polivinilo PVS .002 – .030
Elastómero termoplástico TPE .005 – .020

Determinación de cavidades en el diseño de moldes para moldeo por inyección

Averiguar cuántas cavidades se necesitan es un primer paso importante antes de discutir el tamaño del molde y los requisitos del equipo. Este parámetro es crucial para determinar cuánto se puede producir mediante el proceso de moldeo por inyección en un tiempo determinado, junto con la duración total del ciclo.

Los objetivos de volumen de producción anual de un determinado producto están directamente relacionados con el número de cavidades necesarias. Por ejemplo, el cálculo requiere conocer el tiempo de producción anual disponible si el objetivo es crear 100.000 unidades de media al año. Se trata de 6.240 horas al año (52 semanas * 5 días/semana * 24 horas/día), suponiendo una semana laboral típica de cinco días y 24 horas al día. Entonces, cada mes tiene una media de 520 horas disponibles (6.240 / 12).

Estimación de la duración del ciclo

La estimación del tiempo de ciclo es esencial para calcular cuántas cavidades se necesitan. La parte más gruesa de la pared del artículo que se va a moldear es la que más influye en la duración del ciclo. En la figura 2-3 se muestra una guía para esta estimación, que tiene en cuenta los supuestos de una máquina de moldeo de tamaño adecuado y los tiempos típicos del proceso de inyección. Aunque los tiempos de ciclo pueden variar significativamente en función del material, el gráfico proporciona un punto de partida útil.

Una vez aproximado el tiempo total del ciclo, puede calcularse el número de ciclos por hora dividiendo el tiempo estimado del ciclo por 3.600, que es el número de segundos de una hora. Por ejemplo, se producen 100 ciclos de moldeo por artículo si el grosor máximo de la pared es de 0,100 pulgadas y el tiempo de ciclo es de aproximadamente 36 segundos.

Cavidades y escala de producción

Supongamos que tenemos una necesidad anual de 100.000 unidades. Para satisfacer este criterio, un molde de una sola cavidad requeriría unas 1.000 horas, es decir, 8,33 semanas. Como alternativa, el tiempo de producción podría reducirse a la mitad, a 4,16 semanas, con un molde de dos cavidades. Sin embargo, hay que tener muy en cuenta las ramificaciones financieras de un molde de dos cavidades.

Un molde de una sola cavidad que funcione sin parar no sería viable para grandes cantidades de fabricación, como 10 millones de unidades anuales. En este caso, podrían producirse 624.000 unidades al año con un molde de 16 cavidades. Para llegar a los 10 millones de unidades, podría considerarse la posibilidad de utilizar varios moldes con 16-32 cavidades cada uno, con una producción espaciada de tres a seis meses. Sin embargo, es importante valorar aspectos como el coste y la disponibilidad de equipos de moldeo.

Selección del material adecuado para el diseño de moldes de inyección

Elegir el material adecuado para el diseño de moldes de inyección es un aspecto crítico que influye significativamente en la eficiencia y eficacia del proceso de moldeo. Diversos materiales, desde aceros hasta aleaciones e incluso aluminio, ofrecen características únicas que responden a distintos requisitos de moldeo.

Aceros

  1. Acero al carbono 1020: Ideal para placas eyectoras y placas retenedoras debido a su maquinabilidad. Se requiere carburación para el endurecimiento.
  2. Acero al carbono 1030: Se utiliza para bases de moldes, alojamientos de eyectores y placas de sujeción. Se puede mecanizar y soldar fácilmente, con posibilidad de endurecimiento hasta HRC 20-30.
  3. Acero aleado 4130: Acero de alta resistencia adecuado para placas de retención de cavidades y machos, placas de soporte y placas de sujeción. Se suministra de 26 a 35 HRC.
  4. Acero para herramientas S-7: Resistente a los golpes con buena resistencia al desgaste, utilizado para enclavamientos y cierres. Endurecido a 55-58 HRC.
  5. Acero para herramientas P-20: 4130 modificado, preendurecido para cavidades, machos y placas extractoras. Se suministra con HRC 28-40.
  6. Acero inoxidable S136: Este es uno de los mejores materiales endurecidos para cavidades, núcleos, insertos y otros componentes de moldes de conformado, endurecido a 50-54 HRC.
  7. Acero de alto pulido NAK80: Utilizado para cavidades con acabado superficial de alto vidrio, machos y otros insertos para moldes, preendurecido a 38-42HRC.
  8. ¿Acero 1.2344 y 1.2343? Se trata de acero templado que se utiliza principalmente para cavidades, núcleos y otros componentes de moldes, templado a 50-54 HRC.

Aluminio

El grado de aluminio más común para moldes es 7075 (T6). Esta aleación de calidad aeronáutica, una vez anodizada, alcanza una dureza superficial de hasta 65 Rc para mejorar la resistencia al desgaste. Puede utilizarse para todo el molde y su superficie tiende a alisarse por sí sola, lo que reduce la construcción del molde y los tiempos de ciclo del moldeo por inyección.

Aleaciones de berilio-cobre

Estas aleaciones, como CuBe 10, CuBe 20 y CuBe 275, se utilizan a menudo como componentes montados en bases de moldes de acero o aluminio. Ayudan a disipar el calor, sobre todo en zonas con una difícil colocación de los canales de refrigeración. La dureza oscila entre Rb 40 y Rc 46.

Otros materiales

Aunque menos comunes, otros materiales como epoxi, aleaciones de aluminio/epoxi, cauchos de silicona y madera pueden utilizarse para moldes, principalmente para la producción de pequeños volúmenes o prototipos (normalmente menos de 100 piezas). Estos materiales no son adecuados para la producción de grandes volúmenes debido a su limitada durabilidad y pueden ser más apropiados para la creación de prototipos.

En los últimos tiempos, el aluminio, especialmente la aleación 7075, se ha convertido en una opción viable incluso para la producción de grandes volúmenes, desafiando la percepción tradicional de que el aluminio sólo es adecuado para moldes de bajo volumen o prototipos. La elección del material del molde debe alinearse con los requisitos de volumen de producción, la compatibilidad del material y las características específicas necesarias para el proceso de moldeo.

Acabado superficial y requisitos especiales en el diseño de moldes para moldeo por inyección

Cuando se trata del diseño de productos moldeados, es importante conseguir el aspecto de superficie adecuado, tanto desde el punto de vista estético como para facilitar la aplicación de toques finales como logotipos de marca o ilustraciones ornamentales. Los parámetros del proceso de inyección y el estado de la cavidad del molde influyen directamente en la calidad de la superficie moldeada. Los diseñadores de moldes no pueden controlar los parámetros de procesamiento, pero deben especificar criterios para apariencias específicas con el fin de fabricar moldes con las condiciones de superficie adecuadas.

Las distintas técnicas de mecanizado producen diferentes grados de rugosidad superficial en las superficies de los moldes, lo que afecta al procedimiento de acabado. Por ejemplo, los acabados comunes producidos por Mecanizado por descarga eléctrica (EDM) oscilan entre 10 y 100 micropulgadas (250 y 2.500 micrómetros). Para obtener un acabado de espejo, puede bastar con menos de 1 micropulgada (25 micrómetros), mientras que la lectura media de la mayoría de las piezas puede oscilar entre 20 y 40 micropulgadas (500 y 1.000 micrómetros).

Un acabado más liso de la cavidad reduce las colinas y valles que se producen durante el mecanizado, lo que suele facilitar la expulsión de las piezas moldeadas. En la figura 2-4 se muestra el efecto de la electroerosión en la rugosidad de la superficie de la cavidad, lo que pone de manifiesto la necesidad de un apedreado y pulido adecuados para proporcionar la suavidad requerida. Para los acabados de la superficie de la cavidad del molde, la Sociedad de la Industria del Plástico (SPI) ha creado normas. Hay tres niveles (1, 2 y 3) en cada grado (A, B, C y D), siendo A-1 el acabado más liso y D-3 un acabado grueso, granallado en seco.

Aunque una superficie plana facilita la expulsión, las superficies demasiado lisas pueden generar vacío, especialmente cuando se utilizan resinas rígidas y duras. En estas situaciones, una pequeña rugosidad de la superficie metálica ayuda a eliminar el vacío y permite una expulsión adecuada de la pieza.

Si se aplican acabados posteriores al moldeo, es necesario preparar la superficie de la pieza moldeada. En el caso de las poliolefinas, la oxidación de la superficie es necesaria para facilitar la adhesión de pintura, tinte, hot-stamps u otros acabados decorativos. Minimizar el uso de agentes desmoldeantes durante moldeo por inyección es aconsejable para evitar interferencias con la adhesión, lo que subraya aún más la importancia de una superficie de molde muy pulida.

Es esencial identificar las superficies designadas para la decoración posterior al moldeo en los planos del producto. Esta notificación garantiza que los fabricantes de moldes y los moldeadores reconozcan las zonas críticas que requieren una atención especial en el proceso de acabado.

Gate Método y ubicación

La calidad final, el aspecto y los atributos físicos de un producto moldeado dependen de la ubicación de la compuerta y del tipo de sistema de compuerta empleado. Lo ideal es que la cavidad se cierre de modo que el material fundido entre primero en la sección más gruesa de la pieza, como se ilustra en la imagen siguiente.Ubicación de la puerta

Este concepto se basa en el comportamiento de las moléculas de plástico fundido, que tienden a ocupar el espacio disponible y a buscar una distribución uniforme del aire. Colocar la compuerta en la parte más gruesa de la cavidad fuerza a las moléculas a unirse, comprimiéndolas a medida que se desplazan hacia el interior de la cavidad. Esta compactación expulsa el aire entre las moléculas, lo que da como resultado una estructura molecular densamente empaquetada y una pieza moldeada con una integridad estructural óptima.

Por el contrario, la inyección en el extremo delgado permite que las moléculas se expandan, aumentando los espacios de aire entre ellas y dando lugar a una unión molecular más débil. El resultado es una pieza moldeada con poca integridad estructural.

Aunque la ubicación y el diseño ideales de la puerta se estudiarán en un capítulo posterior, es crucial reconocer las posibles ubicaciones de la puerta en esta fase. Identificar estas ubicaciones permite una comunicación proactiva con el diseñador del producto para abordar cualquier problema. Las puertas, independientemente de su tipo, dejarán una evidencia, conocida como vestigio, que sobresale o se rompe en la pieza moldeada. Nunca estará perfectamente enrasado con la pieza moldeada. Si el vestigio obstaculiza la función, el aspecto o el uso previsto de la pieza moldeada, es posible que haya que reubicar la compuerta, una decisión en la que debe participar activamente el diseñador del producto.

Ejector Método y ubicación

Una vez que el plástico fundido se ha solidificado dentro del molde, es necesario expulsar del mismo el producto moldeado final. El método predominante para esta tarea implica el uso de pasadores eyectores, que se emplean para empujar la pieza moldeada fuera de la cavidad donde tomó forma, como se muestra en la imagen de abajo.Ubicación del eyector

Para optimizar el proceso de expulsión y minimizar la tensión, es aconsejable utilizar pasadores eyectores de mayor diámetro. Esto garantiza una distribución uniforme de la fuerza de expulsión por toda la pieza moldeada, reduciendo el riesgo de grietas o perforaciones causadas por una superficie de expulsión insuficiente. Lo ideal es colocar los pasadores de expulsión estratégicamente para aplicar la fuerza en las zonas más fuertes de la pieza, como cerca de las esquinas, debajo de los resaltes y cerca de las intersecciones de las nervaduras. Aunque los pasadores eyectores redondos son los más comunes y rentables, también son viables los de sección rectangular.

Al igual que las compuertas, los pines eyectores dejan huellas en la pieza moldeada. Debido a la continua expansión y contracción de los diversos componentes del molde durante el proceso de moldeo, es difícil conseguir una perfecta alineación con la superficie de la pieza. En consecuencia, si los pasadores son demasiado cortos, dejan una protuberancia o un exceso de almohadilla de plástico, lo que se conoce como marca testigo, como se ilustra en la imagen inferior. Por el contrario, si los pasadores son demasiado largos, crean impresiones en la pieza de plástico.

diseño de moldes para moldeo por inyección

Es fundamental encontrar un equilibrio en la longitud de las espigas. Unas clavijas excesivamente largas pueden hacer que la pieza moldeada permanezca en las clavijas de expulsión, con el consiguiente riesgo de daños si el molde se cierra sobre la pieza no expulsada. Por consiguiente, es prudente mantener intencionadamente las espigas cortas, lo que da lugar a una fina almohadilla de material sobrante. Los diseñadores de productos deben estar informados de las ubicaciones previstas de las clavijas de expulsión y de las marcas testigo resultantes para tomar decisiones informadas con respecto a la aceptación.

Si las marcas testigo se consideran inaceptables debido a consideraciones funcionales o estéticas, puede ser necesario explorar métodos de expulsión alternativos, como una placa separadora o un sistema avanzado de chorro de aire. Otra opción es cambiar la posición de la pieza en el molde para permitir la reubicación de los pasadores de expulsión, aunque puede suponer un mayor coste del molde.

Localizaciónn de cavidades y canales de refrigeración

Cuando se emplea un molde de una sola cavidad, lo óptimo es situar la cavidad en el centro del molde. Esta configuración facilita la inyección del bebedero, creando condiciones favorables para el proceso de moldeo. La inyección de material se produce directamente en la cavidad, minimizando la distancia de recorrido. Al no existir restricciones, la presión de inyección puede reducirse y la tensión se minimiza eficazmente. Estas condiciones se buscan incluso en moldes multicavidad.

En el caso de los moldes multicavidad, es esencial colocar las cavidades lo más cerca posible del centro del molde. Sin embargo, hay que tener en cuenta la necesidad de pasadores eyectores tanto para las piezas como para los canales encargados de transportar el material a las cavidades. Además, los canales de refrigeración deben colocarse estratégicamente en las placas del molde para llevar el refrigerante, normalmente agua, lo más cerca posible de las cavidades del molde sin comprometer la integridad del acero ni provocar fugas de agua.

Es importante colocar cuidadosamente las cavidades para evitar interferencias con los pernos de montaje y los pasadores eyectores. A medida que aumenta el número de cavidades, la disposición se hace más compleja, lo que dificulta el proceso. Una pauta general es que los canales de refrigeración no deben estar situados a menos del doble de su diámetro de cualquier otro objeto, como se muestra en la siguiente imagen. Así se garantiza que haya suficiente metal alrededor para minimizar el riesgo de rotura.

Canales de refrigeración para moldeo por inyección

La disposición ideal de un molde multicavidades se asemeja a los radios de una rueda. Esta disposición permite situar las cavidades lo más cerca posible del centro del molde y elimina los giros en ángulo recto en el sistema de canales. Estos giros provocan una caída de presión de 20% en cada vuelta, lo que obliga a aumentar el diámetro del canal para mantener un flujo de material adecuado. Este aumento conlleva mayores costes de material y tiempos de ciclo más largos, por lo que debe evitarse siempre que sea posible. La imagen inferior ilustra una disposición típica de los radios para un molde de ocho cavidades.

Diseño de moldes de 8 cavidades

A pesar de las ventajas del concepto de radios, éste conlleva una limitación en el número total de cavidades posibles dentro de un determinado tamaño de molde. Un patrón cuadrado, como el que se muestra en la figura 10, puede alojar más cavidades. Sin embargo, los patrones cuadrados introducen giros en el sistema de canales, a menudo representados como ángulos rectos. Los giros en ángulo recto exigen una presión de inyección adicional para impulsar el material, lo que provoca un aumento del diámetro del canal primario para equilibrar las presiones. Si los patrones cuadrados son necesarios, es preferible tener canales con giros amplios en lugar de ángulos rectos,

disposición cuadrada para el diseño de moldes

Figura 10

Independientemente del sistema de canal empleado, los pasadores eyectores son esenciales para expulsar tanto el sistema de canal como la pieza moldeada. Por lo tanto, la disposición de las cavidades debe tener en cuenta no solo la proximidad de las cavidades al centro del molde para que el recorrido del material sea mínimo, sino también cómo evitar colocar los pasadores eyectores (y los pernos de montaje) en medio de los canales de refrigeración.

Por encima de los elementos son sólo un requisito general sobre el diseño de moldes para moldeo por inyección, habrá algunos requisitos más, tales como Conceptos de ventilación, Dimensionamiento del molde, deslizador molde o elevador, y así sucesivamente, para diseñar un molde no es fácil habilidad. si usted quiere tener el diseño de moldes para moldeo por inyección, puede ponerse en contacto con nosotros para una cotización.

Estudio de caso de diseño de moldes de inyección de Sincere Tech - DFM Anylisis

Para poder pensar de la misma manera dentro de SinereTech, y poder utilizar dimensiones adecuadas para todas las aplicaciones hemos creado las siguientes directrices. Esas directrices de diseño de moldes serán utilizadas por los ingenieros de cálculo, así como una base para nuestros diseñadores en caso de cualquier Molde de inyección proyecto, y a veces podemos llamarlo Informe DFM anylisis también.

  1. Compuerta de inyección y disposición general.

    1. Generalmente, la puerta de inyección se colocará a lo largo del lado más largo de la pieza y el cilindro de la puerta de inyección estará en la distancia más cercana a ese lado (normalmente, el corredor no rodeará la cavidad como un plátano).
    2. Si se utilizan correderas o si otros factores pueden influir en la colocación de la compuerta de inyección o del canal, proporcione algunas sugerencias de ubicación de la compuerta y pregunte al cliente qué ubicación de la compuerta prefiere. Acordar una solución antes de el diseño del molde. A continuación, el diseño general será adecuado para casi todos los moldes.Diseño de moldes de fundición a presión
  2. Distancia entre los bordes de la cavidad y los bordes del inserto.

    1. Para casos normales, excepto para moldes de inyección con correderas más grandes o piezas "profundas", utilice la distancia 50-80mm. El límite superior se utiliza para piezas "más grandes" y el inferior para piezas más pequeñas.
    2. Para herramienta de moldeo por inyección de plástico con correderas más grandes la distancia puede ser de hasta 90-100mm, especialmente cuando se trata de los dos lados a derecha e izquierda desde el lado de la corredera.
    3. Para piezas realmente profundas la distancia puede ser mayor de 100mm, pero entonces debemos pedir consejo al cliente si es adecuada la máquina de moldeo por inyección del cliente.
    4. Para piezas realmente pequeñas se utiliza la distancia mínima de 50 mm.
    5. La distancia para el lado hacia el cilindro de inyección es la misma que para los otros lados, pero unos 10-15mm por encima.
    6. En caso de que quisiéramos optimizar estas distancias. Esto se puede utilizar preferentemente para este tipo de herramientas de fundición a presión
  3. Distancia entre cavidades.

    1. Por lo general, entre cada cavidad se utiliza una distancia de 30-50 mm en la mayoría de los casos.
    2. Para piezas realmente pequeñas se utiliza una distancia mínima de 15-30 mm.
    3. Para piezas realmente profundas, la distancia suele ser superior a 50 mm, pero entonces debemos pedir consejo al cliente si el tamaño del molde de inyección se ajusta a la máquina del cliente.
    4. En los casos en que el canal se encuentre entre las cavidades, la distancia será de 30-40 mm como mínimo entre cada cavidad, si se utiliza una compuerta banana, la distancia entre cada cavidad será de 10 mm más.
  4. Distancia entre el borde del inserto y el borde de la base del molde.

    1. Generalmente (para casos normales) la regla es utilizar la misma distancia que se utiliza para moldeo por inyección (siempre que la pieza no requiera grandes deslizadores). Esto incluye piezas más grandes, piezas más profundas y piezas que requieren correderas más pequeñas. Esto significa que una distancia de 60-90 mm está bien para la mayoría de los moldes.
    2. Para los moldes con grandes correderas hidráulicas, es necesario aumentar la distancia con 50-200 mm por encima de la distancia normal (más de lo que habría sido necesario para el moldeo por inyección). Sin embargo, para esos casos, debemos pedir la aprobación del cliente. También cabe preguntarse hasta qué punto puede ser asimétrico el molde en caso de que sólo se utilice una corredera grande en el lado derecho o izquierdo del molde.
  5. El grosor de las placas A/B y los insertos.

    1. El espesor tanto de los insertos como de las placas A/B viene determinado principalmente por el área proyectada de la pieza. Como regla general, los espesores especificados en la tabla siguiente se utilizarán al diseñar moldes de fundición a presión. Las áreas proyectadas se especifican en cm2. Para grandes áreas proyectadas o moldes profundos se recomienda pedir la aprobación del cliente. Puede haber fórmulas a utilizar en caso de que se optimicen esas dimensiones.

Superficie proyectada (cm2) El grosor entre el borde de la inserción y la parte posterior de la placa A/B El grosor entre el borde de la cavidad y la parte posterior del borde de la inserción
Placa A Placa B Inserte-A Insertar-B
1-100 35-40 40-45 35-40 38-40
100-300 40-60 45-70 40-45 40-45
300-600 60-80 70-100 45-50 45-55
600-1000 80-110 100-130 50-60 55-65
1000-1500 110-140 130-160 60-65 65-70
>1500 ≥140 ≥160 ≥65 ≥70

Por último, si no está seguro de cuál es la mejor solución de diseño de moldes para su molde de inyección, le invitamos a ponerse en contacto con nosotros, le ofreceremos diseño de moldes, producción de moldes y servicio de fabricación de moldes de inyección.